留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ku波段径向线相对论速调管放大器的仿真与设计

阳福香 党方超 贺军涛 巨金川 张晓萍

阳福香, 党方超, 贺军涛, 等. Ku波段径向线相对论速调管放大器的仿真与设计[J]. 强激光与粒子束, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227
引用本文: 阳福香, 党方超, 贺军涛, 等. Ku波段径向线相对论速调管放大器的仿真与设计[J]. 强激光与粒子束, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227
Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227
Citation: Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227

Ku波段径向线相对论速调管放大器的仿真与设计

doi: 10.11884/HPLPB202032.200227
基金项目: 国家自然科学基金项目(61901485,61771481)
详细信息
    作者简介:

    阳福香(1995—),女,博士研究生,从事高功率微波技术研究;1205505877@qq.com

    通讯作者:

    党方超(1989—),男,博士,讲师,从事高功率微波技术研究;15111378883@163.com

  • 中图分类号: TN62

Simulation and design of novel Ku-band radial-line relativistic klystron amplifier

  • 摘要: 高频段相对论速调管放大器(RKA)是近年来高功率微波领域的研究热点之一,其发展主要受限于模式竞争、相位抖动和效率偏低等问题。设计了一种径向线RKA,主要由输入腔、两组非均匀双间隙群聚腔和三间隙提取腔等四部分构成。通过比较单双间隙群聚腔与电子束互作用的耦合系数,说明了非均匀双间隙群聚腔具备对电子束较强的调制能力。前端加载TEM模式反射器的非均匀双间隙群聚腔的工作在TM01-π模式,Q值较大,有利于谐振腔之间的能量隔离。采用两组非均匀双间隙群聚腔级联的方式,在注入功率仅10 kW情况下,实现短漂移管长度下电子束深度群聚达110%。粒子模拟结果表明,该器件具有效率高的优点,在电子束电压400 kV,电流5 kA,磁场强度0.4 T条件下,得到功率825 MW,频率14.25 GHz,效率41%的微波输出。
  • 图  1  径向线RKA整管结构示意图

    1—cathode,2—radial-line intense electron beam,3—input cavity, 4,5—radial-line double-gap bunching cavity,6—three-gap extraction cavity,7—magntic field system

    Figure  1.  Schematic of the radial-line RKA

    图  2  径向线单双间隙群聚腔结构示意图

    Figure  2.  Schematic of radial-line single-gap and double-gap bunching cavity

    图  3  单双间隙群聚腔中的耦合系数

    Figure  3.  Coupling coefficient of single-gap and double-gap bunching cavity

    图  4  双间隙群聚腔的频谱:蓝线为均匀,红线为非均匀

    Figure  4.  Spectrum of double-gap uniform and nonuniform bunching cavity:blue line shows uniform,red line shows nonuniform

    图  5  非均匀双间隙群聚腔中TM01-π模和TM01-0模的电子束负载电导

    Figure  5.  Beam-loading conductance ratio Ge/G0 of TM01-π and TM01-0 mode in the double-gap bunching cavity

    图  6  非均匀双间隙群聚腔中TM01-π模和TM01-0模的Q值与电场分布

    Figure  6.  Q-factor and electric field distribution of TM01-π and TM01-0 mode in the double-gap nonuniform bunching cavity

    图  7  加入TEM反射器的双间隙群聚腔结构示意图和不同D下加入TEM反射器的双间隙群聚腔Q值变化

    Figure  7.  Schematic of double-gap nonuniform bunching cavity with TEM reflector and its Q-factor difference vs D

    图  8  电子束径向基波电流分布

    Figure  8.  Fundamental harmonic current distributions along the radial direction

    图  9  三间隙提取腔结构示意图

    Figure  9.  Schematic of three-gap extraction cavity

    图  10  提取腔间隙中心位置电场强度与电流密度的相位关系

    Figure  10.  Phase relation between electric field and current density in center position of gap extraction cavity

    图  11  径向线RKA输出功率及输出微波频谱

    Figure  11.  Output power of radial-line RKA and frequency spectrum of microwave

    图  12  改变注入信号频率对应器件输出功率与相位变化

    Figure  12.  Output power and phase difference versus frequency of input signal

    图  13  改变电子束参数对应器件输出功率与相位变化

    Figure  13.  Output power and phase difference versus parameters of electron beam

  • [1] Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter & Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [2] Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
    [3] Benford J, Swegle J A, Schamiloglu E. 高功率微波[M]. 国防工业出版社, 2008.

    Benford J, Swegle J A, Schamiloglu E. High power microwave[M]. Beijing: National Defense Industry Press, 2008
    [4] Zhang Jun, Zhang Wei, Zhang Dian, et al. Suppression of the higher-order azimuthal mode competition in an X-band triaxial klystron amplifier with a slotted coaxial waveguide[J]. IEEE Trans Electron Devices, 2020, 67(3): 1215-1220. doi: 10.1109/TED.2019.2963567
    [5] Zhou Yunxiao, Ju Jinchuan, Zhang Jun, et al. Design and optimization of reflectors in a relativistic triaxial klystron amplifier[J]. IEEE Trans Plasma Science, 2020, 48(6): 1923-1929. doi: 10.1109/TPS.2020.2980084
    [6] 张威. X波段高功率高效率相对论三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2019.

    Zhang Wei. Investigation of an X-band high-power and high-efficiency relativistic triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2019
    [7] Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [8] Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: Phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [9] 刘振帮, 雷禄容, 黄华, 等. X波段长脉冲多注相对论速调管放大器杂模振荡抑制[J]. 强激光与粒子束, 2016, 28:033002. (Liu Zhenbang, Lei Lurong, Huang Hua, et al. Suppression of parasitic oscillation in X-band long pulse multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 033002 doi: 10.11884/HPLPB201628.033002
    [10] 戚祖敏. X波段三轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2015.

    Qi Zumin. Investigation of an X-band triaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2015
    [11] Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatts long pulse multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [12] Wu Y, Li Z, Xie H, et al. An S-band high gain relativistic klystron amplifier with high phase stability[J]. Phys Plasmas, 2014, 21: 113107. doi: 10.1063/1.4901811
    [13] 袁欢, 黄华, 何琥, 等. S波段相对论速调管放大器相位稳定性的优化设计及实验研究[J]. 强激光与粒子束, 2017, 29:113001. (Yuan Huan, Huang Hua, He Hu, et al. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29: 113001 doi: 10.11884/HPLPB201729.170133
    [14] 党方超. Ku波段径向线相对论速调管研究[D]. 长沙: 国防科技大学, 2017.

    Dang Fangchao. Research on Ku-band radial relativistic klystron[D]. Changsha: National University of Defense Technology, 2017
    [15] Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A high efficiency Ku-band radial line relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 073113. doi: 10.1063/1.4958810
    [16] Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field[J]. Phys Plasmas, 2014, 21: 063307. doi: 10.1063/1.4886150
  • 加载中
图(13)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  210
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01
  • 修回日期:  2020-09-08
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回