留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体不稳定性及其抑制方案研究

余诗瀚 李晓锋 翁苏明 赵耀 马行行 陈民 盛政明

余诗瀚, 李晓锋, 翁苏明, 等. 激光等离子体不稳定性及其抑制方案研究[J]. 强激光与粒子束, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125
引用本文: 余诗瀚, 李晓锋, 翁苏明, 等. 激光等离子体不稳定性及其抑制方案研究[J]. 强激光与粒子束, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125
Yü Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125
Citation: Yü Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125

激光等离子体不稳定性及其抑制方案研究

doi: 10.11884/HPLPB202133.200125
基金项目: 国家重大专项项目;国家自然科学基金项目(11775144,11975154)
详细信息
    作者简介:

    余诗瀚(1997—),男,硕士研究生,从事激光等离子体物理研究;yushihan@sjtu.edu.cn

    通讯作者:

    翁苏明(1982—),男,博士,研究员,从事激光等离子体物理研究;wengsuming@gmail.com

  • 中图分类号: O534.

Laser plasma instabilities and their suppression strategies

  • 摘要: 受激拉曼散射、受激布里渊散射等激光等离子体不稳定性(LPI)是激光等离子体物理领域最重要的研究课题之一。特别是在激光驱动的惯性约束聚变中,LPI会造成相当份额的激光能量损失,破坏辐射对称性,产生的超热电子还会预热靶丸,进而影响压缩效率和聚变能量增益。近期,在美国国家点火装置上开展的实验表明对LPI物理过程的充分理解和有效控制对成功实现ICF点火至关重要。我们对近期LPI方面的一系列研究进展进行了简单介绍与讨论。首先,回顾了描述LPI过程的三波耦合理论,由此得出了LPI在线性阶段的增长率。接着讨论了一些复杂情景下的LPI物理过程,譬如LPI的非线性发展阶段、级联LPI、多光束LPI以及LPI间的非线性耦合。最后,着重介绍了一系列抑制LPI的技术方案,包括束匀滑技术、光束时域整形、宽带激光、偏振旋转激光以及外加磁场等。
  • 图  1  典型的参量不稳定性(譬如SRS和SBS)的原理示意图[9]

    Figure  1.  Graphic depiction of a parametric instability such as SRS or SBS[9]

    图  2  线性非均匀等离子体中的SRS级联散射导致的二级绝对SRS不稳定,图中的BSRS表示背向SRS[12]

    Figure  2.  Schematic diagram for absolute SRS instability due to the second-order rescattering of SRS in a linearly inhomogeneous plasma. BSRS means backscattering of SRS[12]

    图  3  级联SBS过程中的(a)反射光与(b)透射光频谱[17]

    Figure  3.  Frequency spectra of (a) reflective and (b) transmitting electromagnetic waves in cascaded SBS[17].

    图  4  间接驱动中多光束SRS不稳定性示意图[18]:(a)共用一支散射光(N-beam SL mode);(b)共用一支等离子体波(N-beam SP mode)

    Figure  4.  Schematic diagram for multi-beam SRS instability in indirect-drive ICF. Wave vector matching conditions for(a)N-beam scattered light(SL)mode and(b)N-beam SP mode of multi-beam SRS[18]

    图  5  (a)三个不同的STUD脉冲的样本,其尖峰的宽度和高度的占比度为20%,50%和80%,涨落为10%,以使它们的乘积对于每个尖峰(开,关)都是恒定的[27];(b)对于随机位相板和不同参数的STUD脉冲束SRS反射率与平均入射光强度和线性增益的关系[28]

    Figure  5.  (a) Samples of three different STUD pulses are shown with 20%,50% and 80% duty cycle and 10% jitter in the widths and heights of the spikes such that their product is constant for each spike (on,off) pair[27].(b) SRS reflectivity vs average incident intensity (left) and linear gain (right) for random phase plate (RPP) and a variety of STUD-pulse beams[28]

    图  6  (a)解耦的宽带激光束由许多子束组成,例如100个子束,每两个相邻频率子束之间的频差大于0.1%;(b)不同带宽激光束的背散射光随时间的演化[33]

    Figure  6.  (a) A decoupled broadband laser beam is composed of many beamlets such as 100 beamlets with frequency difference larger than 0.1% between every two adjacent-frequency beamlets. (b) Temporal profiles of the backscattering light found for the incident light with different bandwidths under the same energy[33]

    图  7  不同偏振态激光与等离子体相互作用中,完全通过等离子体时的电场空间分布[38]

    Figure  7.  Spatial distribution of the electric fields at the time the incident pulse exits the plasma[38]

    图  8  (a)(d)(g)当旋转频率分别为$\varOmega /2{\text{π}} =0 {\text{,}}\varOmega /2{\text{π}} =1{\rm{THz}}$$\varOmega /2{\text{π}} =5{\rm{THz}}$时散射光的瞬时反射率随时间的变化图,黑线电表反射率在z方向的分量,红线代表zy方向的总反射率;(b),(e),(h)是与(a),(d),(g)对应的等离子体波随时间变化图;(c),(f),(i)是与(a),(d),(g)对应的电子动量分布随时间变化图。所有模拟的入射激光强度为$2\times {10}^{15}\;{\rm{W}}/{{\rm{cm}}}^{2}$[39]

    Figure  8.  (a),(d) and (g) are the normalized instantaneous reflectivities of the cases $\varOmega /2{\text{π}} =0$$\varOmega /2{\text{π}} =1{\rm{THz}}$ and $\varOmega /2{\text{π}} =5{\rm{THz}}$. Black and red lines respectively represent the reflectivity component in the z direction and the total of the y and z directions. (b), (e) and (h) are the time versus space of the plasma waves(Ex)for the cases corresponding to (a),(d) and (g).(c), (f) and (i) are the instantaneous electron energy distributions for the same Ω as (a),(d) and (g). All the figures are under the pump intensity of $2\times {10}^{15}\;{\rm{W}}/{{\rm{cm}}}^{2}$[39].

    图  9  (a)交替偏振入射光情况下的强度分布,蓝色实线是在一个方向上偏振的光的强度分布,而红色虚线是在另一方向上偏振的光,两个偏振方向垂直,交替周期为400 T;(b)STUD脉冲与偏振方向交替性变化的SBS散射率[40]

    Figure  9.  (a) Intensity profile for the alternating polarization incident light case. The blue solid line is the intensity profile of light polarized in one direction,and the red dashed line is the light polarized in the other direction,The two light polarization directions are perpendicular to each otherand the alternating period is 400 T;(b) Scattering level of SBS with STUD and alternating polarization pulses[40]

    图  10  (a)由两束偏振方向垂直存在频率差的线偏振激光叠加的激光束电场随时间的演化;(b)SBS反射率与频率差的关系[41]

    Figure  10.  (a) The variation in the polarization direction of the beam which is a combination of two perpendicular linear polarization lasers;(b) reflectivity vs mismatch frequency[41]

    图  11  四种等离子体中频率范围[0.9ω0,0.999ω0]中的SBS反射率:(a)H2;(b)HeH;(c)CH和(d)AuB等离子体。频率为ω0的弱反射光从背向散射光中滤除。对于(a)H2,种子光强度为Is=1$ \times 1{0}^{-6}{I}_{0} $,而对于(b)~(d),种子光强度为Is=1$ \times 1{0}^{-4}\;{I}_{0} $[43]

    Figure  11.  The SBS reflectivity in the frequency scope [0.9ω0,0.999ω0] for the four plasmas:(a) H2,(b) HeH,(c) CH,and (d) AuB plasmas. The weak reflected light with a frequency of ω0 is filtered from the backward scattering light. For(a)H2, the seed light intensity is Is=1$ \times 1{0}^{-6}{I}_{0} $,while for (b)~(d),Is=1$ \times 1{0}^{-4}\;{I}_{0} $[43]

    图  12  (a)等离子体尺度L为1200λ,(b)等离子体尺度为400λ。对于大尺度的等离子体散射率随着激光强度的增加而增加,随着磁场强度的增加而降低。当磁场强度足够强时,可以完全降低SRS散射率到能够接受的水平[45]

    Figure  12.  Relectivities of Raman scattering for different magnetic fields and incident lights. Values of laser amplitude a are shown with legends. (a) seed level 10−9,plasma length L=1200λ0;(b) seed level 10−9,and plasma length L=400λ0[45]

    图  13  (a)PIC模拟中,磁化等离子体($0.01,{T}_{{\rm{e}}}={T}_{{\rm{i}}}=1 {\rm{eV}}$)中的背向散射光的能量光谱分布。其中磁场${{B}}_{0}$的模拟范围从10 T到10 kT,与散射光之间的夹角为$ 75° $;(b)磁化等离子体在${{{\varOmega }}_{\rm{e}}}{{/}}{{\rm{\omega }}_{\rm{0}}}{\rm{ = 0}}{\rm{.75}}\;({{{B}}_{\rm{0}}}{\rm{ = 8100}}\;{\rm{T)}}$时随角度变化的背向散射光谱,表现出MLF散射对角度的依赖性,其中虚线代表理论分析预测[46]

    Figure  13.  (a) Spectral energy distribution of light backscattered from magnetized plasma ($N=0.01,{T}_{{\rm{e}}}={T}_{{\rm{i}}}=1{\rm{eV}}$) in PIC simulations. The magnetic field B0 is varied between 100 T and 10 kT at $\theta =75$°.(b) Backscattering spectrum from a magnetized electron-proton plasma as a function of angle at ${{{\varOmega }}_{\rm{e}}}{{/}}{{\rm{\omega }}_{\rm{0}}}{\rm{ = 0}}{\rm{.75}}\;({{{B}}_{\rm{0}}}{\rm{ = 8100}}\;{\rm{T)}}$,illustrating dependence of MLF scattering on angle. Dashed lines show analytic predictions[46]

    表  1  不同机制的激光等离子体不稳定性

    Table  1.   Different mechanisms of laser plasma instabilities

    instabilitydecay process
    Stimulated Raman Scattering (SRS)EM → EM + EPW
    Stimulated Brillouin Scattering (SBS)EM → EM + IAW
    Two Plasmon Decay (TPD)EM → EPW + EPW
    ion acoustic decay instabilityEM → EPW + IAW
    Langmuir decay instabilityEPW → EPW + IAW
    electromagnetic wave decay instabilityEPW → EM + IAW
    two ion acoustic decay instabilityIAW → IAW + IAW
    下载: 导出CSV
  • [1] Atzeni S, Meyerter-Vehn J. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter[M]. London: Oxford Press, 2004:317-388.
    [2] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339. doi: 10.1063/1.1578638
    [3] Froula D H, Divol L, London R A, et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 056302. doi: 10.1063/1.3304474
    [4] Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
    [5] Drake J F, Kaw P K, Lee Yichang, et al. Parametric instabilities of electromagnetic waves in plasmas[J]. The Physics of Fluids, 1974, 17(4): 778-785. doi: 10.1063/1.1694789
    [6] Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
    [7] Kruer W L. The physics of laser plasma interactions[M]. Carlifornia: Addison-Wesley Publishing, 1988: 73-94.
    [8] Liu Chuansheng, Tripathi V K, Eliasson B. High-power laser-plasma interaction[M]. London: Cambridge University Press, 2019: 180-227.
    [9] Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
    [10] Umstadter D, Williams R, Clayton C, et al. Observation of steepening in electron plasma waves driven by stimulated Raman backscattering[J]. Physical Review Letters, 1987, 59(3): 292-295. doi: 10.1103/PhysRevLett.59.292
    [11] Umstadter D, Mori W B, Joshi C. The coupling of stimulated Raman and Brillouin scattering in a plasma[J]. Physics of Fluids B: Plasma Physics, 1989, 1(1): 183-187. doi: 10.1063/1.859085
    [12] Zhao Yao, Sheng Zhengming, Weng Suming, et al. Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma[J]. High Power Laser Science and Engineering, 2019, 7: e20. doi: 10.1017/hpl.2019.5
    [13] Kruer W L, Estabrook K, Lasinski B F, et al. Raman backscatter in high temperature, inhomogeneous plasmas[J]. Physics of Fluids, 1980, 23(7): 1326-1329. doi: 10.1063/1.863145
    [14] Mima K, M. S. Jovanović, Sentoku Y, et al. Stimulated photon cascade and condensate in a relativistic laser-plasma interaction[J]. Physics of Plasmas, 2001, 8(5): 2349-2356. doi: 10.1063/1.1356741
    [15] Winjum B J, Fahlen J E, Tsung F S, et al. Anomalously hot electrons due to re scatter of stimulated Raman scattering in the kinetic regime[J]. Physical Review Letters, 2013, 110: 165001. doi: 10.1103/PhysRevLett.110.165001
    [16] Liu Chuansheng, Rosenbluth M N, White R B. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas[J]. The Physics of Fluids, 1974, 17(6): 1211-1219. doi: 10.1063/1.1694867
    [17] Feng Qingsong, Liu Zhanjun, Zheng Chunyang, et al. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser–plasma interaction[J]. Plasma Physics and Controlled Fusion, 2017, 59: 075007. doi: 10.1088/1361-6587/aa710a
    [18] Xiao Chengzhuo, Zhuo Hongbin, Yin Yan, et al. Linear theory of multibeam parametric instabilities in homogeneous plasmas[J]. Physics of Plasmas, 2019, 26: 062109. doi: 10.1063/1.5096850
    [19] Baldis H A, Villeneuve D M, Labaune C, et al. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(8): 2341-2348. doi: 10.1063/1.859602
    [20] Zhao Yao, Yu Lule, Weng Suming, et al. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering[J]. Physics of Plasmas, 2017, 24: 092116. doi: 10.1063/1.5004689
    [21] 杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48(6):21-36. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Science Sinica Physical, Mechanical & Astronomica, 2018, 48(6): 21-36
    [22] Lindl J D. Inertial confinement fusion[M]. New York: Springer-Verlag, 1998.
    [23] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [24] Dixit S N, Feit M D, Perry M D, et al. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles[J]. Optics Letters, 1996, 21(21): 1715-1717. doi: 10.1364/OL.21.001715
    [25] Lefebvre E, Berger R L, Langdon A B, et al. Reduction of laser self-focusing in plasma by polarization smoothing[J]. Physics of Plasmas, 1998, 5(7): 2701-2705. doi: 10.1063/1.872957
    [26] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
    [27] Afeyan B, Hüller S. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE[C]//EPJ Web of Conferences. EDP Sciences, 2013, 59: 05009.
    [28] Albright B J, Yin Lilan, Afeyan B. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay[J]. Physical Review Letters, 2014, 113: 045002. doi: 10.1103/PhysRevLett.113.045002
    [29] Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. The Physics of Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
    [30] Obenschain S P, Luhmann Jr N C, Greiling P T. Effects of finite-bandwidth driver pumps on the parametric-decay instability[J]. Physical Review Letters, 1976, 36(22): 1309-1312. doi: 10.1103/PhysRevLett.36.1309
    [31] Guzdar P N, Liu Chuansheng, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(10): 2882-2888. doi: 10.1063/1.859921
    [32] Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Physics of Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
    [33] Zhao Yao, Weng Suming, Chen Min, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Physics of Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
    [34] Zhao Yao, Weng Suming, Sheng Zhengming, et al. Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light[J]. Plasma Physics and Controlled Fusion, 2019, 61: 115008. doi: 10.1088/1361-6587/ab4691
    [35] Zhou H Y, Xiao Chengzhuo, Zou Debin, et al. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime[J]. Physics of Plasmas, 2018, 25: 062703. doi: 10.1063/1.5030153
    [36] Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 2019, 26: 062111. doi: 10.1063/1.5098479
    [37] Follett R K, Shaw J G, Myatt J F, et al. Suppressing two-plasmon decay with laser frequency detuning[J]. Physical Review Letters, 2018, 120: 135005. doi: 10.1103/PhysRevLett.120.135005
    [38] Barth I, Fisch N J. Reducing parametric backscattering by polarization rotation[J]. Physics of Plasmas, 2016, 23: 102106. doi: 10.1063/1.4964291
    [39] Zhou Hongyu, Xiao Chengzhuo, Jiao Jinlong, et al. Kinetic simulation of nonlinear stimulated Raman scattering excited by a rotated polarized pump[J]. Plasma Physics and Controlled Fusion, 2019, 61: 105004. doi: 10.1088/1361-6587/ab34ba
    [40] Liu Zhanjun, Zheng Chunyang, Cao Lihua, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 2017, 24: 032701. doi: 10.1063/1.4977910
    [41] Ban Shuaishuai, Wang Qing, Liu Zhanjun, et al. Suppression of stimulated Brillouin scattering by two perpendicular linear polarization lasers[J]. AIP Advances, 2020, 10: 025123. doi: 10.1063/1.5141009
    [42] Hinkel D E, Edwards M J, Amendt P A, et al. Progress toward ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2013, 55: 124015. doi: 10.1088/0741-3335/55/12/124015
    [43] Feng Qingsong, Zheng Chunyang, Liu Zhanjun, et al. Stimulated Brillouin scattering behaviors in multi-ion species plasmas in high-temperature and high-density region[J]. Physics of Plasmas, 2019, 26: 052101. doi: 10.1063/1.5088372
    [44] Paknezhad A, Dorranian D. Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma[J]. Laser and Particle Beams, 2011, 29(3): 373-380. doi: 10.1017/S0263034611000474
    [45] Liu Zhanjun, Li Bin, Xiang Jiang, et al. Faraday effect on stimulated Raman scattering in the linear region[J]. Plasma Physics and Controlled Fusion, 2018, 60: 045008. doi: 10.1088/1361-6587/aaae32
    [46] Edwards M R, Shi Yuan, Mikhailova J M, et al. Laser amplification in strongly magnetized plasma[J]. Physical Review Letters, 2019, 123: 025001. doi: 10.1103/PhysRevLett.123.025001
    [47] Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
    [48] Regan S P. Laser direct-drive inertial confinement fusion research on OMEGA[R]. Rochester: Laboratory for Laser Energetics(LLE), University of Rochester, 2018.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2458
  • HTML全文浏览量:  486
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-16
  • 修回日期:  2020-08-17
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回