留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于箍缩装置的高能量密度物理实验研究进展

黄显宾 徐强 王昆仑 任晓东 周少彤 张思群 蔡红春 王贵林 张朝辉 贾月松 孙奇志 刘盼 袁建强 李洪涛 王勐 谢卫平 邓建军

黄显宾, 徐强, 王昆仑, 等. 基于箍缩装置的高能量密度物理实验研究进展[J]. 强激光与粒子束, 2021, 33: 012002. doi: 10.11884/HPLPB202133.200128
引用本文: 黄显宾, 徐强, 王昆仑, 等. 基于箍缩装置的高能量密度物理实验研究进展[J]. 强激光与粒子束, 2021, 33: 012002. doi: 10.11884/HPLPB202133.200128
Huang Xianbin, Xu Qiang, Wang Kunlun, et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33: 012002. doi: 10.11884/HPLPB202133.200128
Citation: Huang Xianbin, Xu Qiang, Wang Kunlun, et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33: 012002. doi: 10.11884/HPLPB202133.200128

基于箍缩装置的高能量密度物理实验研究进展

doi: 10.11884/HPLPB202133.200128
基金项目: 科学挑战专题项目(TZ2016005);国家自然科学基金项目(11705186,11905208,11605188,11575167,11505171)
详细信息
    作者简介:

    黄显宾(1977—),男,副研究员,博士,主要从事Z箍缩物理与诊断技术研究;caephxb2003@aliyun.com

    通讯作者:

    任晓东(1983—),男,助理研究员,硕士,主要从事Z箍缩物理实验与诊断技术研究;amosrxd@163.com

  • 中图分类号: O539

Progress on high energy density physics experiments with pinch devices

  • 摘要: 基于脉冲功率技术的箍缩装置能够在cm空间尺度和百ns时间尺度产生极端的高温、高压、高密度以及强辐射环境。中物院流体物理研究所在已建成的10 MA级的大型箍缩装置上开展多种负载构型的高能量密度物理实验研究。利用Z箍缩动态黑腔创造出了惯性约束聚变研究所需的高温辐射场;研究了金属箔套筒和固体套筒的内爆动力学特性;利用中低Z材料内爆获得了可观的K壳层线辐射并用于X射线热-力学效应实验研究;磁驱动准等熵加载和冲击加载为材料动态特性研究提供了新的实验能力;采用环形二极管和反射三极管技术的轫致辐射源获得了高剂量(率)的X射线和γ射线;利用磁驱动的径向金属箔模拟了天体物理中恒星射流的形成及其辐射的产生。此外,还介绍了利用反场构型磁化靶聚变装置开展的预加热磁化等离子体靶形成等实验结果。
  • 图  1  高能量密度物理中的各种状态

    Figure  1.  Conditions relevant to high energy density physics

    图  2  动态黑腔负载构型与负载电流、径向和轴向X射线功率波形测量结果

    Figure  2.  Configuration of dynamic hohlraum, measured current and radial and axial X-ray pulses

    图  3  钨丝阵动态黑腔X射线内爆图像和等离子体径向内爆轨迹

    Figure  3.  X-ray pinhole images and measured radial plasma trajectories for W array driven dynamic hohlraum

    图  4  动态黑腔冲击波发射图像、冲击波轨迹与速度以及黑腔辐射温度径向分布

    Figure  4.  Emission images, trajectories and velocity of shock in dynamic hohlraum and radial profile of radiation temperature

    图  5  铝箔套筒负载实物以及箔套筒径向内爆轨迹测量结果与零维薄壳模型比较

    Figure  5.  Al foil load picture and comparison of measured trajectories and zero-dimensional (0D) thin shell calculation

    图  6  铝箔套筒激光阴影图像与内爆不稳定性

    Figure  6.  Laser shadowgraphs of Al foil and implosion instability

    图  7  铝箔套筒早期发射图像

    Figure  7.  Early emission images of Al foil implosion

    图  8  铝固体套筒实验电流和典型X射线背光像

    Figure  8.  Measured load current and typical radiographs for Al solid liner

    图  9  利用PDV测量套筒内界面速度

    Figure  9.  Measuring velocity of the inner liner surface utilizing photonic Doppher velocimetry (PDV) probes

    图  10  双层铝丝阵典型实验结果

    Figure  10.  Typical results from nested Al wire array experiment

    图  11  X射线热-力学效应实验布局与结果

    Figure  11.  Setup and results of X-ray thermo-mechanical effect experiment

    图  12  利用动态黑腔分离辐射脉冲测量辐射不透明度原理示意图

    Figure  12.  Sketch of the opacity measurement using separate X-ray pulses from dynamic hohlraums

    图  13  铝等离子体辐射不透明度吸收谱实验结果

    Figure  13.  Comparison of measured absorption spectrum for aluminum plasma opacity with that of calculation

    图  14  利用二极管和反射式三极管产生轫致辐射示意图

    Figure  14.  Sketch of bremsstrahlung radiation generated by driving diode and reflex triode

    图  15  双环二极管典型实验结果

    Figure  15.  Typical results of double ring diode experiment

    图  16  反射式三极管典型实验结果

    Figure  16.  Typical results of reflex triode experiment

    图  17  磁驱动材料动态特性研究原理图[54]

    Figure  17.  Sketch for the dynamic characteristic research of magnetically driven materials[54]

    图  18  磁加载材料动态特性典型实验结果[54]

    Figure  18.  Typical experimental results of magnetically driven dynamical material characteristics[54]

    图  19  金属箔射流实验设置与典型结果

    Figure  19.  Setup and typical results of the foil jet experiments

    图  20  端部分幅相机获得的FRC形成过程[72]

    Figure  20.  Forming process of field reversed configuration (FRC) captured by end framing camera[72]

  • [1] Drake R P. High-energy-density physics[M]. New York: Springer-Verlag, 2006.
    [2] Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Physics of Plasmas, 2005, 12: 055503. doi: 10.1063/1.1891746
    [3] Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Science, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
    [4] Deng J J, Xie W P, Feng S F, et al. Initial performance of the primary test stand[J]. IEEE Trans Plasma Science, 2013, 41(10): 2580-2583. doi: 10.1109/TPS.2013.2274154
    [5] Huang Xianbin, Zhou Shaotong, Dan Jiakun, et al. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand[J]. Physics of Plasmas, 2015, 22(7): 072707. doi: 10.1063/1.4926532
    [6] 孙奇志, 方东凡, 刘伟, 等. “荧光-1”实验装置物理设计[J]. 物理学报, 2013, 62:078407. (Sun Qizhi, Fang Dongfan, Liu Wei, et al. Phsical design of the "Ying-Guang 1" device[J]. Acta Physica Sinica, 2013, 62: 078407 doi: 10.7498/aps.62.078407
    [7] 方东凡, 孙奇志, 贾月松, 等. “荧光-1”实验装置研制与调试[J]. 强激光与粒子束, 2017, 29:095001. (Fang Dongfan, Sun Qizhi, Jia Yuesong, et al. Development and test of the "Yingguang-l" program-discharged pulsed power device[J]. High Power Laser and Particle Beams, 2017, 29: 095001 doi: 10.11884/HPLPB201729.170077
    [8] Hammer J H, Tabak M, Wilks S C, et al. High yield inertial confinement fusion target design for a Z-pinch-driven hohlraum[J]. Physics of Plasmas, 1999, 6(5): 2129-2136. doi: 10.1063/1.873464
    [9] Smirnov V P. Fast liners for inertial fusion[J]. Plasma Physics and Controlled Fusion, 1991, 33(13): 1697-1714. doi: 10.1088/0741-3335/33/13/014
    [10] Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 1998, 5(5): 2071-2080. doi: 10.1063/1.872879
    [11] Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
    [12] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
    [13] Slutz S A, Herrmann M C, Vesey S A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [14] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201. (Peng Xianjue, Wang Zhen. Nuclear energy and fusion-fission hybrid reactor for pure energy production[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
    [15] 彭先觉, 师学明. 核能与聚变裂变混合能源堆[J]. 物理, 2010, 39(6):385-389. (Peng Xianjue, Shi Xueming. Nuclear energy and fusion-fission hybrid reactor for pure energy production[J]. Physics, 2010, 39(6): 385-389
    [16] 黄显宾, 邓建军, 杨礼兵, 等. “阳”加速器上的Z箍缩诊断技术[J]. 强激光与粒子束, 2010, 22(4):870-874. (Huang Xianbin, Deng Jianjun, Yang Libing, et al. Diagnostics on Yang accelerator for Z-pinch experiment[J]. High Power Laser and Particle Beams, 2010, 22(4): 870-874 doi: 10.3788/HPLPB20102204.0870
    [17] 肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203. (Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [18] Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [19] 肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203. (Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [20] Lebedev S V, Beg F N, Bland S N, et al. Effect of discrete wires on the implosion dynamics of wire array Z pinches[J]. Physics of Plasmas, 2001, 8(8): 3734-3746. doi: 10.1063/1.1385373
    [21] Cuneo M E, Waisman E M, Lebedev S V, et al. Characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA[J]. Physical Review E, 2005, 71: 046406. doi: 10.1103/PhysRevE.71.046406
    [22] Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
    [23] Wang Xiaoguang, Sun Shunkai, Xiao Delong, et al. Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility[J]. Chinese Physics B, 2019, 28: 035201. doi: 10.1088/1674-1056/28/3/035201
    [24] Oreshkin V I. Thermal instability during an electrical wire explosion[J]. Physics of Plasmas, 2008, 15: 092103. doi: 10.1063/1.2966121
    [25] Peterson K, Sinars D B, Yu E P, et al. Electrothermal instability growth in magnetically driven pulsed power liners[J]. Physics of Plasmas, 2012, 19: 092701. doi: 10.1063/1.4751868
    [26] Gof’berg S M, Velikovich A L. Suppression of Rayleigh-Taylor instability by the snowplow mechanism[J]. Physics of Fluids B, 1993, 5(4): 1164-1172. doi: 10.1063/1.860974
    [27] Reinovsky R E. Pulsed power experiments in hydrodynamics and material properties[J]. IEEE Trans Plasma Science, 2000, 28(5): 1563-1570. doi: 10.1109/27.901234
    [28] Sinars D B, Slutz A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z Facility[J]. Physical Review Letters, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
    [29] Sinars D B, Campbell E M, Cuneo M E, et al. The role of magnetized liner inertial fusion as a pathway to fusion energy[J]. Journal of Fusion Energy, 2016, 35(1): 78-84. doi: 10.1007/s10894-015-0023-4
    [30] 阳庆国, 黄显宾, 刘冬兵, 等. 聚龙一号装置上首次铝套筒Z箍缩X射线背照相实验[J]. 强激光与粒子束, 2016, 28:040101. (Yang Qingguo, Huang Xianbin, Liu Dongbing, et al. Diagnostics on Yang accelerator for Z-pinch experiment[J]. High Power Laser and Particle Beams, 2016, 28: 040101 doi: 10.11884/HPLPB201628.120101
    [31] Strand O T, Berzins L V, Goosman D R, et al. Velocimetry using heterodyne techniques[R]. UCRL-CONF-206034, 2004.
    [32] Dolan D H. Accuracy and precision in photonic Doppler velocimetry[J]. Review of Scientific Instruments, 2010, 81: 053905. doi: 10.1063/1.3429257
    [33] 汤文辉, 张若棋, 赵国民. 脉冲X射线诱导的热击波[J]. 高压物理学报, 1995, 9(2):107-111. (Tang Wenhui, Zhang Ruoqi, Zhao Guomin. Thermal shock wave induced by impulsive X-ray[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 107-111 doi: 10.11858/gywlxb.1995.02.004
    [34] 彭常贤, 谭红梅, 林鹏, 等. 脉冲软X光辐射三种材料的喷射冲量实验研究[J]. 强激光与粒子束, 2003, 15(1):89-93. (Peng Changxian, Tan Hongmei, Lin Peng, et al. Experimental studies of blowoff impulse in materials irradiated by pulsed soft X-ray[J]. High Power Laser and Particle Beams, 2003, 15(1): 89-93
    [35] Remo J L, Furnish M D, Lawrence R J. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials[J]. Journal of Plasma Physics, 2013, 79: 121-141.
    [36] Spielman R.B, Deeney C, Chandler G A, et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ[J]. Physics of Plasmas, 1998, 5(5): 2105-2111. doi: 10.1063/1.872881
    [37] Coverdale C A, Jones B, Ampleford D J, et al. K-shell X-ray sources at the Z accelerator[J]. High Energy Density Physics, 2010, 6(2): 143-152. doi: 10.1016/j.hedp.2010.01.006
    [38] Bailey J E, Rochau G A, Mancini R C, et al. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas[J]. Physics of Plasmas, 2009, 16: 058101. doi: 10.1063/1.3089604
    [39] Nagayama T, Bailey J E, Loisel G, et al. Control and diagnosis of temperature, density, and uniformity in X-ray heated iron/magnesium samples for opacity measurements[J]. Physics of Plasmas, 2014, 21: 056502. doi: 10.1063/1.4872324
    [40] Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2015, 517(7532): 56-59. doi: 10.1038/nature14048
    [41] Swanekamp. B, Weber B V, Stephanakis S J, et al. Bremsstrahlung target optimization for reflex triodes[J]. Physics of Plasmas, 2008, 15: 083105. doi: 10.1063/1.2963090
    [42] Iwan D C. Computer simulations of the ring diode for Saturn[R]. SAND-85-2585, 1986.
    [43] Struve K W, Joseph N R, Thomas R D, et al. Refurbishment and enhancement of the Saturn accelerator[C]//IEEE International Conference on Plasma Sciences. 2015.
    [44] Murphy D P, Weber B V, Swanekamp S B, et al. High-current reflex triode research[C]//The 18th IEEE International Pulsed Power Conference. 2011.
    [45] Lai Dingguo, Qiu Mengtong, Xu Qifu, et al. A two-stage series diode for intense large-area moderate pulsed X rays production[J]. Review of Scientific Instruments, 2017, 88: 013506. doi: 10.1063/1.4974102
    [46] 孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J]. 力学进展, 2012, 42(4):206-219. (Sun Chengwei, Zhao Jianheng, Wang Guiji, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advance in Mechanics, 2012, 42(4): 206-219
    [47] Davis J P, knudson M D, Deeney C, et al. Magnetically driven isentropic compression to multimegabar pressure using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310. doi: 10.1063/1.1871954
    [48] Cauble R, Reisman D B, Asay J R, et al. Isentropic compression experiments to 1 Mbar using magnetic pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10821-10824. doi: 10.1088/0953-8984/14/44/383
    [49] Davis J P, Knudson M D. Multi-megabar measurement of the principal quasi-isentrope for tantalum[C]//AIP Conference Proceedings. 2009, 1195: 673-676.
    [50] Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W[C]//AIP Conference Proceedings, 2007, 955: 1177-1180.
    [51] Asay J R, Vogler T J, Ao T, et al. Dynamic yielding of single crystal Ta at strain rates of 5×105/s[J]. Journal of Applied Physics, 2011, 109(7): 073507. doi: 10.1063/1.3562178
    [52] Martin M R, Lemeke R W, McBride R D, et al. Solid liner implosions on Z for producing multi-megabar, shockless compressions[J]. Physics of Plasmas, 2012, 19: 056310. doi: 10.1063/1.3694519
    [53] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [54] 王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展[J]. 高能量密度物理, 2020, 3(1):14-25. (Wang Guilin, Zhang Zhaohui, Sun Qizhi, et al. Progress on research of magnetically driven loading techniques using "Julong-1" device[J]. High Energy Density Physics, 2020, 3(1): 14-25
    [55] De Gouveia Dal Pino E M. Astrophysical jets and outflows[J]. Advances in Space Research, 2005, 35(5): 908-924. doi: 10.1016/j.asr.2005.03.145
    [56] Ryutov D, Drake R P, Kane J, et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics[J]. The Astrophysical Journal, 1999, 518(2): 821-832. doi: 10.1086/307293
    [57] Ryutov D D, Drake R P, Remington B A. Criteria for scaled laboratory simulations of astrophysical MHD phenomena[J]. The Astrophysical Journal Supplement, 2000, 127(2): 465-468. doi: 10.1086/313320
    [58] Bellan P M. Miniconference on astrophysical jets[J]. Physics of Plasmas, 2005, 12: 058301. doi: 10.1063/1.1900563
    [59] Ciardi A, Lebedev S V, Frank A, et al. 3D MHD simulations of laboratory plasma jets[J]. Astrophysics and Space Science, 2007, 307: 17-22. doi: 10.1007/s10509-006-9215-8
    [60] Suzuki-Vidal F, Lebedev S V, Bland S N, et al. Generation of episodic magnetically driven plasma jets in a radial foil Z-pinch[J]. Physics of Plasmas, 2010, 17: 112708. doi: 10.1063/1.3504221
    [61] Qiang Xu, Jiakun Dan, Wang Guilin, et al. The magnetically driven plasma jet produces a pressure of 33 GPa on PTS[J]. Physics of Plasmas, 2017, 24: 010701. doi: 10.1063/1.4974038
    [62] Hamaguchi K, Yamauchi S, Koyama K. X-ray study of Herbig Ae/Be stars[J]. The Astrophysical Journal, 2005, 618(1): 360-384. doi: 10.1086/423192
    [63] Nisini B, Milillo A, Saraceno P, et al. Mass loss rates from HI infrared lines in Herbig Ae/Be stars[J]. Astronomy and Astrophysics, 1995, 302: 169.
    [64] Benedettini M, Nisini B, Giannini T, et al. An ISO investigation of the MWC 297 circumstellar region[J]. Astronomy and Astrophysics, 1998, 339: 159.
    [65] R. Bonito, S. Orlando, Peres G, et al Generation of radiative knots in a randomly pulsed protostellar jet[J]. Astronomy and Astrophysics, 2010, 517(11): A68.
    [66] Lin Munan, Liu Ming, Zhu Guanghui, et al. Field-reversed configuration formed by in-vessel θ-pinch in a tandem mirror device[J]. Review of Scientific Instruments, 2017, 88: 093505. doi: 10.1063/1.5001313
    [67] Shi Pengyu, Ren Baoming, Zheng Jian, et al. Formation of field-reversed configuration using an in-vessel odd-parity rotating magnetic field antenna in a linear device[J]. Review of Scientific Instruments, 2017, 89: 103502.
    [68] Liao Hui, Lin Munan, Liu Ming, et al. Translation speed measurements of hydrogen, helium, and argon field-reversed configurations in the central cell of a KMAX mirror device[J]. Plasma Science and Technology, 2019, 21: 085102. doi: 10.1088/2058-6272/ab19e8
    [69] Lin M, Zhan X, Zhou H, et al. High-voltage and high-current crowbar system based on pseudospark switches: from system design to verification[J]. Journal of Instrumentation, 2020, 15: P03029. doi: 10.1088/1748-0221/15/03/P03029
    [70] Zhang Ming, Xuan Jingjing, Yang Yong, et al. Design of high voltage pulsed power supply for HFRC[J]. IEEE Trans Plasma Science, 2020, 48(6): 1688-1692.
    [71] Zhao Xiaoming, Jia Yuesong. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration[J]. Review of Scientific Instruments, 2014, 85: 053510. doi: 10.1063/1.4875584
    [72] Sun Qizhi, Yang Xianjun, Jia Yuesong, et al. Formation of field reversed configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003
    [73] 方东凡, 秦卫东, 孙奇志, 等. 夹断开关对“荧光-1”实验装置电流特性的影响[J]. 强激光与粒子束, 2018, 30:055001. (Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the “Yingguang-1” device[J]. High Power Laser and Particle Beams, 2018, 30: 055001 doi: 10.11884/HPLPB201830.170385
  • 加载中
图(20)
计量
  • 文章访问数:  1733
  • HTML全文浏览量:  542
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-07-07
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回