留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流大气中漫射目标的平均强度和信噪比

向宁静 郭秋芬 董群锋

向宁静, 郭秋芬, 董群锋. 湍流大气中漫射目标的平均强度和信噪比[J]. 强激光与粒子束, 2021, 33: 031002. doi: 10.11884/HPLPB202133.200131
引用本文: 向宁静, 郭秋芬, 董群锋. 湍流大气中漫射目标的平均强度和信噪比[J]. 强激光与粒子束, 2021, 33: 031002. doi: 10.11884/HPLPB202133.200131
Xiang Ningjing, Guo Qiufen, Dong Qunfeng. Average intensity and signal-to-noise ratio from a fully diffuse target in atmospheric turbulence[J]. High Power Laser and Particle Beams, 2021, 33: 031002. doi: 10.11884/HPLPB202133.200131
Citation: Xiang Ningjing, Guo Qiufen, Dong Qunfeng. Average intensity and signal-to-noise ratio from a fully diffuse target in atmospheric turbulence[J]. High Power Laser and Particle Beams, 2021, 33: 031002. doi: 10.11884/HPLPB202133.200131

湍流大气中漫射目标的平均强度和信噪比

doi: 10.11884/HPLPB202133.200131
基金项目: 国家自然科学基金项目(61805173);陕西省科技厅基金项目(2019JQ-901);咸阳师范学院校级项目(14XSYK1010,15XSYK035)
详细信息
    作者简介:

    向宁静(1979—),女,博士,主要从事光(电磁)波在大气湍流中的散射特性研究;xiangningjing@sohu.com

  • 中图分类号: 0564

Average intensity and signal-to-noise ratio from a fully diffuse target in atmospheric turbulence

  • 摘要: 基于广义惠更斯-菲涅尔原理,根据Rytov相位结构函数的二次近似,推导了湍流大气中漫射目标探测器表面的平均强度和信噪比的解析表达式。给出不同类型尺寸的漫射目标散射波经湍流大气传输在探测器表面的平均强度和信噪比,数值分析了不同目标尺寸、湍流强度、透镜大小对探测器表面平均强度和信噪比的影响。目标尺寸和透镜尺寸越大,信噪比越大;相反地,湍流越大,信噪比越小。
  • 图  1  目标、湍流、孔径示意图

    Figure  1.  Schematic diagram of target, turbulence and aperture

    图  2  平均强度与湍流强度的关系

    Figure  2.  Relationship between average intensity and turbulence refractive index structure constaut $C_n^2 $

    图  3  不同形状目标的平均强度

    Figure  3.  Average intensity of different target size

    图  4  信噪比随$C_n^2 $的变化

    Figure  4.  Dependence of SNR on $C_n^2 $

  • [1] Fried D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[J]. J Opt Soc Am, 1966, 56: 1372-1379. doi: 10.1364/JOSA.56.001372
    [2] Ishimaru A. Limitation on image resolution imposed by a random medium[J]. Applied Optics, 1978, 17: 348-352. doi: 10.1364/AO.17.000348
    [3] Mahajan V N, Lum B K. Imaging through atmospheric turbulence with annular pupils[J]. Applied optics, 1981, 20: 3233-3237. doi: 10.1364/AO.20.003233
    [4] Yura H T. Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence[J]. Optica Acta International Journal of Optics, 1979, 26: 627-644.
    [5] Shapiro J H, Capron B A, Harney R C. Imaging and target detection with a heterodyne-reception optical radar[J]. Applied optics, 1981, 20: 3292-3313. doi: 10.1364/AO.20.003292
    [6] Wang S J, Plonus M A. Imaging through turbulence: Degradation of signal-to-noise ratio[J]. Optics Communications, 1984, 50: 73-78. doi: 10.1016/0030-4018(84)90139-1
    [7] Elsebelgy B, Plonus M, Yang C C. Double-passage imaging of an object behind a random medium[J]. J Opt Soc Am, 1995, 12: 307-313. doi: 10.1364/JOSAA.12.000307
    [8] Loktev L, Svyatoslav S, Gleb V. Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation[J]. Optics Letters, 2011, 36: 2656-2658. doi: 10.1364/OL.36.002656
    [9] Gal R, Kiryati N. Progress in the restoration of image sequences degraded by atmospheric turbulence[J]. Pattern Recognition Letters, 2014, 48: 8-14. doi: 10.1016/j.patrec.2014.04.007
    [10] Douglas A, Jefferies M, Stuart M, et al. High-resolution speckle imaging through strong atmospheric turbulence[J]. Optics Express, 2016, 24(11): 12116-12129. doi: 10.1364/OE.24.012116
    [11] Plemmons R J, Prasad S, Zhang Qiang. Deblurring compressive spectro-polarimetric images taken trough atmospheric turbulence[J]. Applied Optics, 2014, 6(86): 13-17.
    [12] Cui L Y, Cao X G, Zhou F G. Influence of moderate-to-strong non-Kolmogorov turbulence on the imaging system by atmospheric turbulence MTF[J]. Optik, 2015, 126: 191-198. doi: 10.1016/j.ijleo.2014.08.147
    [13] Plonus M A, Ouyang C F, Wang S H. Intensity properties of partially coherent beam waves[J]. Applied Optics, 1980, 19: 3082-3085. doi: 10.1364/AO.19.003082
    [14] Plonus M A, Wang S J. Quadratic structure functions and scintillation[J]. Applied Optics, 1985, 24: 570-571. doi: 10.1364/AO.24.000570
  • 加载中
图(4)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  40
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-12-28
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回