Self-triggering all-solid-state Marx generator
-
摘要: 随着全固态高压脉冲发生器在材料改性、生物医学和工业等领域上的广泛应用,全固态脉冲发生器正朝着小型化、智能化和模块化方向发展。为了进一步减小电源的体积、降低成本,提出了一种自触发驱动的正极性全固态Marx发生器的拓扑。只需提供一路隔离信号控制一级放电开关管的导通和关断,通过级间电容对相邻级的放电管门极自动充电和放电,使其依次导通和关断。这种拓扑使得Marx发生器中的多个开关管的驱动电路简单很多,无需提供隔离供电的多路驱动电源,且避免了开关的动态、静态均压问题。基于这种拓扑搭建了一台17级的正极性Marx发生器样机,且电压幅值和脉宽都连续可调,在10 kΩ纯阻性负载上输出10 kV、重复频率100 Hz的正极性高压脉冲,脉冲前沿约为328 ns。样机体积小巧、工作稳定,验证了该方案的可行性。Abstract: With the wide application of all-solid-state high-voltage pulse generators in the fields of material modification, biomedicine and industry, all-solid-state pulse generators are developing in the direction of miniaturization, intelligence and modularization. To further reduce the volume and cost of the power supply, this paper proposes a positive self-triggering all-solid-state Marx generator topology. It only needs to provide an isolated signal to control the turn-on and turn-off of discharging switch in the first stage, and the gates of the adjacent-stage discharging switches will be automatically charged and discharged through the inter-stage capacitors, so that they turn on and off one by one. This topology makes the driving circuit of the multiple switches in the Marx generators much simpler and does not need to provide a multi-channel driving power supply with isolated power supplies, and also avoids the dynamic and static voltage balancing problems of the switches. Based on this topology, a 17-stage positive polarity Marx generator prototype is built, and the voltage amplitudes and pulse widths are continuously adjustable. It outputs 10 kV positive high-voltage pulses at a repetition frequency of 100 Hz over a 10 kΩ resistive load. The leading edge is approximately 328 ns. The prototype is small in size and stable in work, which verifies the feasibility of this topology.
-
Key words:
- self-triggering /
- Marx generator /
- pulse generator /
- pulsed power
-
表 1 电路参数
Table 1. Circuit parameters
input DC voltage/V signal width/μs storage capacitance of Cn/μF gate capacitance of Cg(n−1)/nF driving capacitance of Cd(n−1)/pF gate series resistance/Ω gate parallel resistance/kΩ resistance of load/kΩ 600 1 1.47 4.7 150 12 5.1 10 -
[1] 刘钟阳, 吴彦, 王宁会. 双极性窄脉冲介质阻挡放电合成臭氧的研究[J]. 高电压技术, 2001, 27(2):28-29. (Liu Zhongyang, Wu Yan, Wang Ninghui. Experimental study on ozone synthesis in dielectric barrier discharge triggered by bipolar narrow pulse[J]. High Voltage Engineering, 2001, 27(2): 28-29 doi: 10.3969/j.issn.1003-6520.2001.02.013 [2] Samaranayake W J M, Miyahara Y, Namihira T, et al. Pulsed streamer discharge characteristics of ozone production in dry air[J]. IEEE Trans Dielectrics and Electrical Insulation, 2002, 7(2): 254-260. [3] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge[C]//International Conference on Gas Discharges and Their Applications. 2008(17): 609-612. [4] Pendleton S J, Kastner J, Gutmark E, et al. Surface streamer discharge for plasma flow control using nanosecond pulsed power[J]. IEEE Trans Plasma Science, 2011, 39(11): 2072-2073. doi: 10.1109/TPS.2011.2138166 [5] 袁雪林, 梁步阁, 吕波, 等. 探地雷达高功率高稳定度脉冲源设计[J]. 强激光与粒子束, 2007, 19(10):1689-1692. (Yuan Xuelin, Liang Buge, Lü Bo, et al. High-power and high-stability pulser for ground penetrating radar[J]. High Power Laser and Particle Beams, 2007, 19(10): 1689-1692 [6] Zhang C H, Lü P, Zhao Y P, et al. Xenon discharge-produced plasma radiation source for EUV lithography[J]. IEEE Trans Industry Applications, 2010, 46(4): 1661-1666. doi: 10.1109/TIA.2010.2051059 [7] Chen X, Zhuang J, Kolb J F, et al. Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields[J]. Technol Cancer Res Treat, 2012, 11(1): 83-93. doi: 10.7785/tcrt.2012.500237 [8] 房俊龙, 朴在林, 张喜海. 30 kV液体食品灭菌用高电压脉冲发生器的设计[J]. 农机化研究, 2006(8):95-97. (Fang Junlong, Pu Zailin, Zhang Xihai. Design of 30 kV high-voltage pulse generator for sterilization in liquid food[J]. Journal of Agricultural Mechanization Research, 2006(8): 95-97 doi: 10.3969/j.issn.1003-188X.2006.06.035 [9] 饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001. (Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser & Particle Beams, 2020, 32: 055001 [10] Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Trans Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861 [11] Hess H L, Baker R J. Transformerless capacitive coupling of gate signals for series operation of power MOS devices[J]. IEEE Trans Power Electronics, 2000, 15(5): 923-930. doi: 10.1109/63.867682 [12] 张春朋, 张树卿, 赵国亮. 串联IGBT动态均压方法综述[J]. 电工技术学报, 2013, 28(s0):197-202. (Zhang Chunpeng, Zhang Shuqing, Zhao Guoliang. Review of dynamic voltage balancing methods for series-connected IGBTs[J]. Transactions of China Electrotechnical Society, 2013, 28(s0): 197-202 [13] Lu Ting, Zhao Zhengming, Ji Shiqi, et al. Active clamping circuit with status feedback for HV-IGBT[C]//International Conference on Electrical Machines and Systems (ICEMS). 2012: 1-5. [14] Lei Pang, Tian Junlong, He Kun, et al. A compact series-connected SiC MOSFETs module and its application in high voltage nanosecond pulse generator[J]. IEEE Trans Industrial Electronics, 2019, 66(12): 9238-9247. doi: 10.1109/TIE.2019.2891441 [15] Li Rong. The design of new compact Marx generator[J]. Chinese Journal of Electronics, 2018, 27(6): 1305-1308. doi: 10.1049/cje.2018.09.017 [16] Rao Junfeng, Zhang Wei, Jiang Song, et al. Nanosecond pulse generator based on cascaded avalanche transistors and Marx circuits[J]. IEEE Trans Dielectrics and Electrical Insulation, 2019, 26(2): 374-380. doi: 10.1109/TDEI.2018.007710 [17] Zeng Weirong, Yao Chenguo, Dong Shoulong, et al. Self-triggering high-frequency nanosecond pulse generator[J]. IEEE Trans Power Electronics, 2020, 35(8): 8002-8012. doi: 10.1109/TPEL.2020.2967183