留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微腔内气体抽离的多尺度模拟与分析

李海洋 张占文 易勇 毕鹏 栾旭 史瑞廷

李海洋, 张占文, 易勇, 等. 微腔内气体抽离的多尺度模拟与分析[J]. 强激光与粒子束, 2021, 33: 042001. doi: 10.11884/HPLPB202133.200243
引用本文: 李海洋, 张占文, 易勇, 等. 微腔内气体抽离的多尺度模拟与分析[J]. 强激光与粒子束, 2021, 33: 042001. doi: 10.11884/HPLPB202133.200243
Li Haiyang, Zhang Zhanwen, Yi Yong, et al. Multi-scale simulation and analysis of gas evacuation processes in a microcavity[J]. High Power Laser and Particle Beams, 2021, 33: 042001. doi: 10.11884/HPLPB202133.200243
Citation: Li Haiyang, Zhang Zhanwen, Yi Yong, et al. Multi-scale simulation and analysis of gas evacuation processes in a microcavity[J]. High Power Laser and Particle Beams, 2021, 33: 042001. doi: 10.11884/HPLPB202133.200243

微腔内气体抽离的多尺度模拟与分析

doi: 10.11884/HPLPB202133.200243
基金项目: 环境友好能源材料国家重点实验室自主课题资助项目(20fksy04);四川省重点研发计划项目(2019YFG0432)
详细信息
    作者简介:

    李海洋(1995—),男,硕士,从事空心玻璃微球打孔充气研究;lihaiyang1995@163.com

    通讯作者:

    张占文(1973—),男,研究员,博士,主要从事激光聚变靶的研究与制备;bjzzw1973@163.com

  • 中图分类号: O351.2

Multi-scale simulation and analysis of gas evacuation processes in a microcavity

  • 摘要: 基于适用于整个克努森数范围的流动理论,建立了去除惯性约束聚变实验中靶丸内空气的理论模型,并设计实验验证了此模型的可靠性。物理实验要求靶丸内空气浓度低于10×10−6,数值模拟了去除靶丸内空气的过程,重点分析了靶丸内空气浓度、压力与除气时间的关系。计算并比较了单管路一次抽气法、单管路循环抽气法与双管路流洗法三种去除靶丸内空气方法的时间成本。数值计算结果表明:单管路一次抽气法中,靶丸上的微通道的存在对去除靶丸内空气所需时间的影响不可忽略,在考虑靶丸上微通道与充气管的情况下,需要1961.77 h才能使靶丸内的空气浓度达到标准。单管路循环抽气法中,抽气次数与单次抽气程度会影响去除靶丸内空气所需总时间,在单次抽气程度值取最优的情况下,采用充三次,抽四次的方案可使达标总时间减少至1 h左右,此方案下单次充气和抽气时间分别为6 min和10 min。而采用双管路流洗法则仅需11 min便可使靶丸内空气浓度达标。
  • 图  1  靶丸抽气物理模型

    Figure  1.  Physical model of target shot evacuation

    图  2  真空罐抽气实验装置图

    Figure  2.  Experimental setup of gas evacuation from vacuum tank

    图  3  真空罐抽气过程的模拟与实验数据

    Figure  3.  Simulation and experimental data of the gas evacuation process invacuum tank

    图  4  充气过程中ICF腔内外压差变化

    Figure  4.  Differential pressure changes inside and outside the ICF cavity during the gas filling process

    图  5  三种情况下靶丸内空气浓度及压力与时间的关系

    Figure  5.  The relationship between theair concentration in the target shot,the pressure in the target shot and time under three conditions

    图  6  第一次抽气程度X的值对第一次抽气时间(t1)、第一次充气时间(t2)、第二次抽气时间(t3)、与总时间(tall)的影响

    Figure  6.  Influence of the values of the first gas evacuation degree X on the first gas evacuation time (t1), the first gas filling time (t2), the second gas evacuation time (t3), and the total time (tall)

    图  7  充气一次和抽气两次时的气体流动(a)靶丸内压力与时间的关系(b)靶丸内空气浓度与时间的关系

    Figure  7.  Gas flow underfilling one timeandevacuationtwo times (a) relationship between the pressure in the target shot and time; (b) relationship between the air concentration in the target shot and time

    图  8  充气两次和抽气三次时的气体流动(a)靶丸内压力与时间的关系(b)靶丸内空气浓度与时间的关系

    Figure  8.  Gas flow underfilling two times and evacuationthree times (a) relationship between the pressure in the target shot and time; (b) relationship between the air concentration in the target shot and time

    图  9  充气三次和抽气四次时的气体流动情况

    Figure  9.  Gas flow under filling three times and evacuation four times

    图  10  不同管径下的充气和抽气时间

    Figure  10.  Time of gas filling and gas evacuation under different pipe diameters

    图  11  双管路流洗过程的气体流动情况

    Figure  11.  Gas flow during double-line flow washing process

    表  1  情况B不同阶段的抽气时间

    Table  1.   Evacuation time at different stages of Case B

    stagethe initial pressure/Pathe final pressure/Paextraction time/hthe proportion/%
    I10132510132.50.170.01
    II10132.51013.251.770.09
    III1013.25101.32517.660.90
    IV101.32510.1325176.569.00
    V10.13251.013251765.6190.00
    下载: 导出CSV
  • [1] Campbell E M, Goncharov V N, Sangster T C, et al. Laser-direct-drive program: promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2017, 2(2): 37-54. doi: 10.1016/j.mre.2017.03.001
    [2] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [3] Li Feng, Zhang Zhanwen, Li Jing, et al. Study on the strength of titanium doped hollow glass microspheres[J]. Journal of Non-Crystalline Solids, 2017, 459: 18-25. doi: 10.1016/j.jnoncrysol.2016.12.029
    [4] 陈鹏玮, 厉彦忠, 丁岚, 等. 低温冷冻靶微管燃料充注流动冷凝特性[J]. 强激光与粒子束, 2017, 29:122001. (Chen Pengwei, Li Yanzhong, Ding Lan, et al. Flow and condensation characteristics of fuel filling in cryogenic target fill tube[J]. High Power Laser and Particle Beams, 2017, 29: 122001 doi: 10.11884/HPLPB201729.170178
    [5] Schmitt M L, Shelby J E, Hall M M. Preparation of hollow glass microspheres from sol–gel derived glass for application in hydrogen gas storage[J]. Journal of Non-Crystalline Solids, 2006, 352(6/7): 626-631.
    [6] Hoppe M L, Steinman D A. New developments in glass shells from SiGDP-residual gases, gas filling and tailored half-lives[J]. Fusion Science and Technology, 2007, 51(4): 606-610. doi: 10.13182/FST07-A1452
    [7] Parham T, Kozioziemski B, Atkinson D, et al. Cryogenic target system for hydrogen layering[J]. Fusion Science and Technology, 2016, 69(1): 407-419. doi: 10.13182/FST15-162
    [8] 张占文, 李波, 唐永建, 等. 准动态柱腔充气靶制备工艺研究[J]. 强激光与粒子束, 2005, 17(2):209-212. (Zhang Zhanwen, Li Bo, Tang Yongjian, et al. Fabrication of the hohlraum gas-filled target connected with gas source[J]. High Power Laser and Particle Beams, 2005, 17(2): 209-212
    [9] Kline J L, Hager J D. Aluminum X-ray mass-ablation rate measurements[J]. Matter and Radiation at Extremes, 2017, 2(1): 16-21. doi: 10.1016/j.mre.2016.09.003
    [10] Chen Yongping, Deng Zilong. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics, 2017, 819: 401-434. doi: 10.1017/jfm.2017.181
    [11] Chen Yongping, Wu Liangyu, Zhang Chengbin. Emulsion droplet formation in coflowing liquid streams[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 87: 013002.
    [12] Zhang Chengbin, Deng Zilong, Chen Yongping. Temperature jump at rough gas–solid interface in Couette flow with a rough surface described by Cantor fractal[J]. International Journal of Heat and Mass Transfer, 2014, 70: 322-329. doi: 10.1016/j.ijheatmasstransfer.2013.10.080
    [13] Deng Zilong, Liu Xiangdong, Zhang Chengbin, et al. Melting behaviors of PCM in porous metal foam characterized by fractal geometry[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1031-1042. doi: 10.1016/j.ijheatmasstransfer.2017.05.126
    [14] 林伟, 王凯, 毕鹏, 等. ICF冷冻靶微管充气过程中气体压力测量[J]. 强激光与粒子束, 2012, 24(10):2343-2346. (Lin Wei, Wang Kai, Bi Peng, et al. Gas pressure measurement in ICF cryogenic target micro-tube gas-filling process[J]. High Power Laser and Particle Beams, 2012, 24(10): 2343-2346 doi: 10.3788/HPLPB20122410.2343
    [15] Wu Liangyu, Zhou Hua, Yu Cheng, et al. Simulation of the gas filling and evacuation processes in an Inertial Confinement Fusion (ICF) hohlraum[J]. Processes, 2019, 7: 269. doi: 10.3390/pr7050269
    [16] Yu Cheng, Wu Suchen, Yang Weibo. Theoretical investigation of Gas filling and leaking in inertial confinement fusion hohlraum[J]. Sustainability, 2018, 10: 3763. doi: 10.3390/su10103763
    [17] Bhandarkar S D, Parham T, Fair J. Modeling and experiments of compressible gas flow through microcapillary fill tubes on NIF targets[J]. Fusion Science and Technology, 2021, 59(1): 51-57.
    [18] Takagi M, Saito K, Frederick C, et al. Fabrication and attachment of polyimide fill tubes to plastic NIF capsules[J]. Fusion Science and Technology, 2007, 51(4): 638-642. doi: 10.13182/FST51-638
    [19] Johal Z Z, Crippen J W, Forsman A C, et al. Robust capsule and fill tube assemblies for the national ignition campaign[J]. Fusion Science and Technology, 2009, 55(3): 331-336. doi: 10.13182/FST08-3503
    [20] Dongari N, Sharma A, Durst F. Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes[J]. Microfluidics and Nanofluidics, 2009, 6(5): 679-692. doi: 10.1007/s10404-008-0344-y
    [21] Present R D, Debethune A J. Separation of a gas mixture flowing through a long tube at low pressure[J]. Physical Review Journals Archive, 1949, 75(7): 1050-1057.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  191
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2021-04-07
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回