留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种不同线栅结构的水平极化辐射波模拟器

肖晶 吴刚 王海洋 谢霖燊 程乐 石凌

肖晶, 吴刚, 王海洋, 等. 两种不同线栅结构的水平极化辐射波模拟器[J]. 强激光与粒子束, 2021, 33: 033004. doi: 10.11884/HPLPB202133.200281
引用本文: 肖晶, 吴刚, 王海洋, 等. 两种不同线栅结构的水平极化辐射波模拟器[J]. 强激光与粒子束, 2021, 33: 033004. doi: 10.11884/HPLPB202133.200281
Xiao Jing, Wu Gang, Wang Haiyang, et al. Horizontally polarized radiation-wave simulator with two different wire grating structures[J]. High Power Laser and Particle Beams, 2021, 33: 033004. doi: 10.11884/HPLPB202133.200281
Citation: Xiao Jing, Wu Gang, Wang Haiyang, et al. Horizontally polarized radiation-wave simulator with two different wire grating structures[J]. High Power Laser and Particle Beams, 2021, 33: 033004. doi: 10.11884/HPLPB202133.200281

两种不同线栅结构的水平极化辐射波模拟器

doi: 10.11884/HPLPB202133.200281
详细信息
    作者简介:

    肖晶:肖 晶(1989—),女,博士,助理研究员,从事电磁脉冲环境生成与模拟技术;xiaojing@nint.ac.cn

  • 中图分类号: TN011

Horizontally polarized radiation-wave simulator with two different wire grating structures

  • 摘要: 比较了末端收拢和均匀拉线的双锥-平面线栅水平极化辐射波模拟器辐射场的分布规律,讨论了拉线根数和收拢组数对辐射场的影响。结果表明,双锥中心正下方测点辐射场基本不受线栅结构变化的影响。对于其他位置,两种结构的模拟器各有特点:拉线根数相同时,末端均匀拉线的模拟器可令辐射场强提高约5%~20%,但前沿会变慢10%左右;末端收拢的模拟器场强幅值相对较低,但具有较快的前沿,并且架设相对容易。增加拉线根数和收拢组数有利于提高辐射场强,但场强增加的幅度逐渐减小。拉线根数由24增加到96时前沿可加快约10%,半宽变化不大。增加收拢组数会使前沿变慢。综合辐射场变化规律及施工难易程度,可令末端均匀拉线模拟器的拉线根数取48,此时对收拢结构的天线,可令收拢组数取16。
  • 图  1  末端收拢的双锥-平面线栅天线原理图

    Figure  1.  Schematic diagram of end-tucked biconical-wire grating antenna

    图  2  末端均匀拉线的双锥-平面线栅天线原理图(俯视图)

    Figure  2.  Schematic diagram of uniformly spaced biconical-wire grating antenna (top view)

    图  3  双锥中心正下方不同高度上极化分量场

    Figure  3.  Polarized E-field components at different heights under the bicone

    图  4  3 m高水平面上沿水平方向的极化分量场

    Figure  4.  Polarized E-field components along horizontal direction at 3 m above the ground

    图  5  结构不同时辐射场峰值变化

    Figure  5.  The change of peak value with different structures

    图  6  结构不同时辐射场前沿变化

    Figure  6.  The change of rise time with different structures

    图  7  结构不同时辐射场半宽变化

    Figure  7.  The change of half-width with different structures

    图  8  t=50 ns时模拟器内距地面3 m的场分布(单位:V/m)

    Figure  8.  The E-field distribution at 3 m above the ground within different simulators at 50 ns (Unit: V/m)

    图  9  末测点辐射场随拉线根数的变化

    Figure  9.  The E-field change with different grating wire number at different points

    图  10  收拢组数不同时测点的辐射场波形参数变化量

    Figure  10.  The change of E-field parameters with different group number

    表  1  拉线根数不同时两种结构天线辐射场参数比较

    Table  1.   Comparison of E-field parameters under different grating wire number

    coordinates/mrise time/nshalf-width/ns
    end-tucked antennauniformly distributed antennaend-tucked antennauniformly distributed antenna
    24 wires48 wires96 wires24 wires48 wires96 wires24 wires48 wires96 wires24 wires48 wires96 wires
    (0 0 5) 2.6 2.5 2.6 2.6 2.6 2.6 24.1 24.8 25.0 25.1 25.8 26.2
    (5 0 3) 2.8 2.6 2.5 3.0 3.0 2.9 16.8 16.8 16.9 17.1 17.1 17.1
    (5 2 3) 2.8 2.5 2.6 3.1 2.9 2.9 16.6 16.6 16.7 16.8 17.0 16.8
    (5 0 5) 2.8 2.5 2.4 3.1 2.7 2.7 21.0 20.8 20.6 22.6 22.7 22.8
    (5 2 5) 3.0 2.5 2.5 3.1 2.8 2.7 22.0 22.3 22.3 22.9 22.9 23.0
    下载: 导出CSV

    表  2  末端收拢的双锥-平面线栅天线测点电场的波形参数

    Table  2.   E-field parameters of the end-tucked biconical-wire grating simulator

    coordinates/mpeak E-field/(V·m−1)rise time/nshalf-width/ns
    6 groups12 groups16 groups24 groups48 groups6 groups12 groups16 groups24 groups48 groups6 groups12 groups16 groups24 groups48 groups
    (10 0 1) 1050 1263 1311 1361 1410 2.2 2.4 2.5 2.6 2.7 4.4 4.5 4.6 4.5 4.6
    (10 2 1) 1170 1297 1322 1366 1415 2.3 2.5 2.6 2.6 2.6 4.4 4.5 4.5 4.6 4.7
    (5 0 1) 1907 1956 1969 1979 1997 2.5 2.7 2.7 2.7 2.8 5.8 5.9 6.0 6.0 6.0
    (5 2 1) 1899 1941 1956 1967 1985 2.5 2.7 2.7 2.8 2.9 5.8 5.8 6.0 5.8 5.9
    (5 0 3) 2212 2320 2345 2375 2408 2.6 2.7 2.7 2.8 2.9 16.8 17.1 17.1 17.1 17.1
    (5 2 3) 2240 2318 2345 2369 2397 2.5 2.7 2.8 2.9 2.8 16.6 16.8 16.8 16.8 17.0
    (5 0 5) 2447 2729 2787 2839 2896 2.2 2.6 2.7 2.7 2.7 20.5 22.3 22.6 22.6 22.7
    (5 2 5) 2787 2816 2881 2929 2941 2.2 2.1 2.2 2.3 2.8 22.0 23.0 22.8 23.0 22.9
    下载: 导出CSV
  • [1] 李亚南, 谭志良. 基于PIN二极管的快上升沿电磁脉冲防护模块设计与研究[J]. 兵工学报, 2018, 39(10):2066-2072. (Li Ya’nan, Tan Zhiliang. Design and research of the fast rise time electromagnetic pulse protection module based on PIN diode[J]. Acta Armamentarii, 2018, 39(10): 2066-2072 doi: 10.3969/j.issn.1000-1093.2018.10.021
    [2] 刘青, 谢彦召. 高空电磁脉冲作用下埋地电缆的瞬态响应规律[J]. 高电压技术, 2017, 43(9):3014-3020. (Liu Qing, Xie Yanzhao. Transient response law of buried cable to high-altitude electromagnetic pulse[J]. High Voltage Engineering, 2017, 43(9): 3014-3020
    [3] 谢霖燊, 吴伟, 朱湘琴. 分布式负载垂直极化有界波电磁脉冲模拟器外泄场的规律分析[J]. 强激光与粒子束, 2020, 32:055002. (Xie Linshen, Wu Wei, Zhu Xiangqin. Regularity analysis of leakage-field from vertically polarized bounded wave electromagnetic pulse simulator with distributed load[J]. High Power Laser and Particle Beams, 2020, 32: 055002
    [4] Blundell R. Horizontally polarized dipole—II electromagnetic pulse simulator[C]//Proceedings of the European Electromagnetics International Symposium on Electromagnetic Environment and Consequences. 1994, 2: 1159-1165.
    [5] 杜立航, 高成, 陈海林, 等. 金属挡板对平行线栅有界波模拟器的影响仿真研究[J]. 强激光与粒子束, 2018, 30(7):073204. (Du Lihang, Gao Cheng, Chen Hailin, et al. Simulation study on influence of metal plate on parallel wire-grid bounded-wave simulator[J]. High Power Laser and Particle Beams, 2018, 30(7): 073204 doi: 10.11884/HPLPB201830.170465
    [6] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2254-2258.
    [7] IEC 61000-2-9, Description of HEMP environment-radiation disturbance basic EMC publication[S].
    [8] 傅海军, 张维刚, 岳思橙, 等. 系统级电磁脉冲模拟试验技术[J]. 现代防御技术, 2018, 46(3):127-132. (Fu Haijun, Zhang Weigang, Yue Sicheng, et al. Electromagnetic pulse simulating test methods on system level[J]. Modern Defense Technology, 2018, 46(3): 127-132
    [9] Dhoot V, Gupta S. Return loss validation of a novel cantor based antenna using FIT and FDTD[C]//Proceedings of 2011 International Conference on Communications and Signal Processing. Calicut: IEEE, 2011: 374-378.
    [10] Yao Lijun, Shen Tao, Kang Ning, et al. Time-domain simulation and measurement of a guided-wave EMP simulator’s field uniformity[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1187-1194. doi: 10.1109/TEMC.2013.2257795
    [11] Giri D V, Baum C E. Design guidelines for flat-plate conical guided-wave EMP simulators with distributed terminators[R]. Sensor and Simulation Note 402, 1996.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2021-01-07
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回