留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁调制DCCT温漂相关因素灰色关联分析

王东兴 朱燕燕 周力任 李瑞 武万锋 胡志敏

王东兴, 朱燕燕, 周力任, 等. 磁调制DCCT温漂相关因素灰色关联分析[J]. 强激光与粒子束, 2021, 33: 034002. doi: 10.11884/HPLPB202133.200286
引用本文: 王东兴, 朱燕燕, 周力任, 等. 磁调制DCCT温漂相关因素灰色关联分析[J]. 强激光与粒子束, 2021, 33: 034002. doi: 10.11884/HPLPB202133.200286
Wang Dongxing, Zhu Yanyan, Zhou Liren, et al. Grey correlation analysis on related factors of temperature drift in magnetic modulated DCCT[J]. High Power Laser and Particle Beams, 2021, 33: 034002. doi: 10.11884/HPLPB202133.200286
Citation: Wang Dongxing, Zhu Yanyan, Zhou Liren, et al. Grey correlation analysis on related factors of temperature drift in magnetic modulated DCCT[J]. High Power Laser and Particle Beams, 2021, 33: 034002. doi: 10.11884/HPLPB202133.200286

磁调制DCCT温漂相关因素灰色关联分析

doi: 10.11884/HPLPB202133.200286
基金项目: 国家重点研发计划项目(2016YFC0105402);上海市市场监督管理局项目(2019-09)
详细信息
    作者简介:

    王东兴(1977—),男,博士,高级工程师,从事特种电源及高精度电流测量技术研究;wangdx@sari.ac.cn

    通讯作者:

    朱燕燕(1980—),女,硕士,高级工程师,研究方向为高分辨率超导磁铁电源及电流传感器;zhuyy@sari.ac.cn

    胡志敏(1964—),男,学士,高级工程师,研究方向为特种电源及工艺;huzm@sari.ac.cn

  • 中图分类号: TM933.14

Grey correlation analysis on related factors of temperature drift in magnetic modulated DCCT

  • 摘要: 为进一步改善磁调制DCCT(Direct Current Current Transducer)的温度特性,将磁调制DCCT化整为零,利用灰色相关理论确定了DCCT各部分温度系数对整机的影响程度;同时,还提出了一种磁调制DCCT温度系数综合评价方法。根据磁调制DCCT的工作原理,把DCCT分为PCB(Printed Circuit Board)、线圈和取样电阻三部分,并分别测出DCCT整机、PCB、线圈和取样电阻的温度系数;然后,利用灰色相关理论对7个被测DCCT的各部分温度系数进行关联计算,获得相应的关联系数,从而确定DCCT温度特性的主要因素。根据DCCT温度特性的主、次要因素并结合工程实际,设定了概念DCCT作为参考,利用灰色相关理论计算出7个被测DCCT与参考DCCT的温度系数的灰色关联加权值,完成了被测磁调制DCCT温度性能的综合评价。最后,指出了降低DCCT整机温度敏感性的研究方向。
  • 图  1  DCCT原理图

    Figure  1.  Diagram of DCCT

    表  1  实验结果

    Table  1.   Results of experiments

    type of DCCTtemperature coefficient/(μV·℃−1
    DCCTPCBcoilRs
    Sinap-DCCT 400A 1#0.62710.53610.11360.0206
    Sinap-DCCT 200A0.24160.44910.16850.0316
    LEM IT 400-S 1#0.53170.47440.35420.0491
    LEM IT 400-S 2#1.47650.85841.33090.0512
    Sinap-DCCT 400A 2#1.07170.85930.28310.0323
    Sinap-DCCT 1000A 1#1.90101.52980.70490.0242
    Sinap-DCCT 1000A 2#0.68641.14170.06520.0607
    下载: 导出CSV

    表  2  DCCT各部分温度系数的相关系数

    Table  2.   Correlation coefficients of Ct in each part of DCCT

    different partTC of DCCTTC of PCBTC of coilTC of Rs
    TC of DCCT1.000 000
    TC of PCB0.802 2081.000 000
    TC of coil0.718 670*0.297 7931.000 000
    TC of Rs−0.138 720**0.031 9390.169 5751.000 000
    *表示显著相关(P<0.05),**表示极显著(P<0.01)
    下载: 导出CSV

    表  3  DCCT温度特性及构成因素灰色关联分析标准化结果

    Table  3.   Standardized results of grey correlation analysis between temperature characteristics and composition factors of DCCT

    type of DCCTTC of DCCT(X0TC of PCB(X1TC of coil(X2TC of RsX3
    Sinap-DCCT 400A 1#−0.525 2−0.754 0−0.706 2−1.182 6
    Sinap-DCCT 200A−1.185 4−0.973 1−0.584 1−0.456 4
    LEM IT 400-S 1#−0.688 6−0.909 4−0.171 70.700 6
    LEM IT 400-S 2#0.929 70.057 51.997 80.834 2
    Sinap-DCCT 400A 2#0.236 40.060 0−0.329 6−0.410 0
    Sinap-DCCT 1000A 1#1.656 81.748 20.607 4−0.948 3
    Sinap-DCCT 1000A 2#−0.423 70.770 9−0.813 61.462 5
    下载: 导出CSV

    表  4  DCCT温度特性及构成因素灰色关联分析的Δik

    Table  4.   Δi(k) of grey correlation analysis between temperature characteristics and components of DCCT

    type of DCCTTC of PCB(X1TC of coil(X2TC of RsX3
    Sinap-DCCT 400A 1#0.228 80.181 00.657 4
    Sinap-DCCT 200A0.212 40.601 30.729 0
    LEM IT 400-S 1#0.220 80.516 91.389 2
    LEM IT 400-S 2#0.872 21.068 10.095 5
    Sinap-DCCT 400A 2#0.176 50.566 00.646 4
    Sinap-DCCT 1000A 1#0.091 41.049 42.605 1
    Sinap-DCCT 1000A 2#1.194 60.389 91.886 2
    下载: 导出CSV

    表  5  DCCT温度特性与构成因素的${\xi _{\rm{i}}}(k)$

    Table  5.   ${\xi _{\rm{i}}}(k)$ between temperature characteristics and composition factors of DCCT

    type of DCCTTC of PCB(X1TC of coil(X2TC of RsX3
    Sinap-DCCT 400A 1#0.910 30.939 60.711 2
    Sinap-DCCT 200A0.920 20.732 20.686 2
    LEM IT 400-S 1#0.915 10.766 10.517 9
    LEM IT 400-S 2#0.641 00.588 00.997 1
    Sinap-DCCT 400A 2#0.942 50.746 00.715 2
    Sinap-DCCT 1000A 1#1.000 00.592 70.356 7
    Sinap-DCCT 1000A 2#0.558 20.823 60.437 2
    mean0.841 00.741 20.631 6
    rank1.000 02.000 03.000 0
    下载: 导出CSV

    表  6  基于灰色关联分析的DCCT综合评价的标准化结果

    Table  6.   Standardized results of comprehensive evaluation of DCCT based on grey correlation analysis

    type of DCCTTC of DCCTTC of PCBTC of coilTC of Rs
    reference1.000 01.000 01.000 01.000 0
    Sinap-DCCT 400A 1#0.313 50.335 10.081 10.206 1
    Sinap-DCCT 200A0.120 80.280 70.120 40.316 1
    LEM IT 400-S 1#0.265 80.296 50.253 00.491 4
    LEM IT 400-S 2#0.738 30.536 50.950 60.511 7
    Sinap-DCCT 400A 2#0.535 90.537 10.202 20.323 2
    Sinap-DCCT 1000A 1#0.950 50.956 10.503 50.241 6
    Sinap-DCCT 1000A 2#0.343 20.713 50.046 60.606 9
    下载: 导出CSV

    表  7  基于灰色关联分析的DCCT综合评价的Δik

    Table  7.   Δi(k) of DCCT’s comprehensive evaluation based on grey relational analysis

    type of DCCTTC of DCCTTC of PCBTC of coilTC of Rs
    Sinap-DCCT 400A 1#0.686 50.664 90.918 90.793 9
    Sinap-DCCT 200A0.879 20.719 30.879 60.683 9
    LEM IT 400-S 1#0.734 20.703 50.747 00.508 6
    LEM IT 400-S 2#0.261 70.463 50.049 40.488 3
    Sinap-DCCT 400A 2#0.464 10.462 90.797 80.676 8
    Sinap-DCCT 1000A 1#0.049 50.043 90.496 50.758 4
    Sinap-DCCT 1000A 2#0.656 80.286 50.953 40.393 1
    下载: 导出CSV

    表  8  7个被测DCCT与参考DCCT的${\xi _{\rm{i}}}(k)$

    Table  8.   ${\xi _{\rm{i}}}(k)$ between 7 tested DCCTs and reference DCCT

    type of DCCTTC of DCCTTC of PCBTC of coilTC of Rs
    Sinap-DCCT 400A 1#0.447 60.456 00.373 00.409 7
    Sinap-DCCT 200A0.383 90.435 30.383 80.448 6
    LEM IT 400-S 1#0.429 90.441 10.425 40.528 4
    LEM IT 400-S 2#0.705 00.553 70.989 60.539 5
    Sinap-DCCT 400A 2#0.553 30.554 00.408 50.451 3
    Sinap-DCCT 1000A 1#0.989 31.000 00.534 90.421 5
    Sinap-DCCT 1000A 2#0.459 30.682 10.364 00.598 5
    下载: 导出CSV

    表  9  7个被测DCCT与参考DCCT的关联度及排序

    Table  9.   Correlation and rank between 7 tested DCCTs and reference DCCT

    type of DCCTequal correlation weighted correlation
    coefficientrankcoefficientrank
    Sinap-DCCT 400A 1# 0.421 6 6 0.431 4 6
    Sinap-DCCT 200A 0.412 9 7 0.405 8 7
    LEM IT 400-S 1# 0.456 2 5 0.442 2 5
    LEM IT 400-S 2# 0.696 9 2 0.700 0 2
    Sinap-DCCT 400A 2# 0.491 8 4 0.514 4 4
    Sinap-DCCT 1000A 1# 0.736 4 1 0.844 9 1
    Sinap-DCCT 1000A 2# 0.526 0 3 0.521 0 3
    下载: 导出CSV
  • [1] 焦毅, 翟纪元, 陆辉华, 等. 基于超导直线加速器的XFEL初步方案[J]. 强激光与粒子束, 2015, 27:055101. (Jiao Yi, Zhai Jiyuan, Lu Huihua, et al. Primary scheme of superconducting linac-driven XFEL in China[J]. High Power Laser and Particle Beams, 2015, 27: 055101 doi: 10.11884/HPLPB201527.055101
    [2] 赵振堂, 冯超. X射线自由电子激光[J]. 物理, 2018, 47(8):481-490. (Zhao Zhentang, Feng Chao. X-ray free electron lasers[J]. Physics, 2018, 47(8): 481-490 doi: 10.7693/wl20180801
    [3] 赵振堂, 王东, 殷立新, 等. 上海软X射线自由电子激光装置[J]. 中国激光, 2019, 46:0100004. (Zhao Zhentang, Wang Dong, Yin Lixin, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100004 doi: 10.3788/CJL201946.0100004
    [4] 王东兴, 李瑞, 郭春龙, 等. 质子加速器注入、引出磁铁电源的纹波抑制[J]. 原子能科学技术, 2019, 53(9):1 577-1 582. (Wang Dongxing, Li Rui, Guo Chunlong, et al. Ripple rejection of power supply in injection and extraction magnet in proton accelerator[J]. Atomic Energy Science and Technology, 2019, 53(9): 1 577-1 582
    [5] 王东兴, 朱燕燕, 李瑞, 等. 基于开环增益的DCCT线性误差测量评估方法[J]. 西北大学学报: 自然科学版, 2018, 48(3):343-348. (Wang Dongxing, Zhu Yanyan, Li Rui, et al. A linearity error measurement method based on open-loop gain in DCCT[J]. Journal of Northwest University: Natural Science Edition, 2018, 48(3): 343-348
    [6] 王东兴, 朱燕燕, 李瑞, 等. 磁调制零磁通电流传感器状态监测方法[J]. 西安电子科技大学学报: 自然科学版, 2018, 45(3):169-174. (Wang Dongxing, Zhu Yanyan, Li Rui, et al. States monitoring method of zero-flux current sensor based on magnetic modulation[J]. Journal of Xidian University, 2018, 45(3): 169-174
    [7] 韩超, 龙锋利, 程健, 等. 直流电流传感器高精度校准系统设计[J]. 原子能科学技术, 2020, 54(1):166-171. (Han Chao, Long Fengli, Cheng Jian, et al. Design of high-precision calibration system for direct current-current transformer[J]. Atomic Energy Science and Technology, 2020, 54(1): 166-171 doi: 10.7538/yzk.2019.youxian.0020
    [8] 李敏, 聂勇敢, 李生鹏, 等. 基于EPICS的CSRe束流诊断控制系统升级[J]. 强激光与粒子束, 2019, 31:125103. (Li Min, Nie Yonggan, Li Shengpeng, et al. Upgrade of CSRe beam diagnostic control system based on EPICS[J]. High Power Laser and Particle Beams, 2019, 31: 125103 doi: 10.11884/HPLPB201931.190144
    [9] 张子忠. 基于NB-IoT 的分布式光伏电站漏电监测系统[D]. 保定: 华北电力大学, 2019: 3-5.

    Zhang Zizhong. Leakage monitoring system of distributed photovoltaic power station based on NB-IoT[D]. Baoding: North China Electric Power University, 2019: 3-5.
    [10] 王农. 精密测量直流大电流的自激振荡磁通门法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 64-66.

    Wang Nong. Self-oscillating fluxgate technology for precision measurement of DC high current[D]. Harbin: Harbin Institute of Technology, 2016: 64-66).
    [11] 邵霞. 电流型电子式电压互感器关键技术及其应用研究[D]. 长沙: 湖南大学, 2013: 15-16.

    Shao Xia. Research on key techniques of current-based electronic voltage transformer and their application[D]. Changsha: Hunan University, 2013: 15-16.
    [12] 万丽. 航天用高精度霍尔电流传感器开发技术研究[D]. 西安: 西安电子科技大学, 2011: 5-24.

    Wan Li. Technology development of an astronautic high precision Hall current sensor[D]. Xi’an: Xidian University, 2011: 5-24.
    [13] 国旗, 傅鹏, 蒋力. 霍尔传感器温度漂移补偿电路设计[J]. 强激光与粒子束, 2017, 29:046003. (Guo Qi, Fu Peng, Jiang Li. Design of temperature compensation for Hall sensor[J]. High Power Laser and Particle Beams, 2017, 29: 046003 doi: 10.11884/HPLPB201729.160466
    [14] 戚继飞, 阳桂蓉, 罗志强. 相位差磁调制直流漏电流传感器误差分析[J]. 自动化与仪器仪表, 2018, 227(9):149-152. (Qi Jifei, Yang Guirong, Luo Zhiqiang. Error analysis of phase difference magnetic modulation DC leakage current sensor[J]. Automation and Instrumentation, 2018, 227(9): 149-152
    [15] 王东兴, 朱燕燕, 李瑞, 等. 磁调制DCCT调制噪声及测量方法研究[J/OL]. 原子能科学技术, 2020.

    Wang Dongxing, Zhu Yanyan, Li Rui, et al. Study on modulation noise and its measurement method of DCCT with magnetic modulation[J/OL]. Atomic Energy Science and Technology, 2020 http://kns.cnki.net/kcms/detail/11.2044.TL.20200622.0844.002.html.
    [16] Maniktala S. Switching power supplies A to Z[M]. Burlington: Newnes, 2006: 15-21.
    [17] 李雪梅. 灰色关联分析与 GM(1,1)模型优化的研究与应用[D]. 南京: 南京航空航天大学, 2011: 1-2.

    Li Xuemei. Research on Grey correlation analysis, optimization of GM(1,1) Model and Their Applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 1-2
  • 加载中
图(1) / 表(9)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  38
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回