留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波无线传能高性能双极化整流天线设计

陈强 潘嶙 黄祥

陈强, 潘嶙, 黄祥. 微波无线传能高性能双极化整流天线设计[J]. 强激光与粒子束, 2021, 33: 033003. doi: 10.11884/HPLPB202133.200292
引用本文: 陈强, 潘嶙, 黄祥. 微波无线传能高性能双极化整流天线设计[J]. 强激光与粒子束, 2021, 33: 033003. doi: 10.11884/HPLPB202133.200292
Chen Qiang, Pan Lin, Huang Yang. Design of high-performance dual-polarized rectenna for microwave wireless power transmission[J]. High Power Laser and Particle Beams, 2021, 33: 033003. doi: 10.11884/HPLPB202133.200292
Citation: Chen Qiang, Pan Lin, Huang Yang. Design of high-performance dual-polarized rectenna for microwave wireless power transmission[J]. High Power Laser and Particle Beams, 2021, 33: 033003. doi: 10.11884/HPLPB202133.200292

微波无线传能高性能双极化整流天线设计

doi: 10.11884/HPLPB202133.200292
详细信息
    作者简介:

    陈 强(1992—),男,博士,主要从事天线设计、多物理场仿真、微波无线能量传输方面的研究;dennie_chen@163.com

    潘 嶙(1986—),男,硕士,研究领域为电子工程;1151916057@qq.com

    通讯作者:

    黄 祥(1985—),男,副研究员,硕士,主要主要从事微波毫米波电路设计和电磁波与微波技术研究;huangx03@qq.com

  • 中图分类号: TN701

Design of high-performance dual-polarized rectenna for microwave wireless power transmission

  • 摘要: 设计了一款用于微波无线传能的5.8 GHz高效率双极化整流天线。该整流天线包含5.8 GHz双极化接收天线和5.8 GHz F类整流电路,并通过金属探针实现接收天线和整流电路的集成。接收天线为2×2微带阵列天线,采用了金属环加载技术提升天线的阻抗带宽和鲁棒性。采用金属探针代替常规微波接插件和线缆,实现了接收天线和整流电路的集成,该集成技术不仅简化了整流天线结构,还降低了整流天线的重量、损耗和成本。将双极化整流天线进行了加工和整流效率测试并将其与同样口径面积的线极化整流天线进行比较。实验测试结果表明,在1.47 mW·cm−2的最佳入射功率密度下,该双极化整流天线的最大转换效率达到76.8%。与线极化整流天线相比,当入射波极化方向在0°~90°变化时,双极化整流天线的转换效率始终保持在62%以上,具有稳定的直流输出,表现出良好的全极化接收整流性能。
  • 图  1  双线极化接收天线结构图

    Figure  1.  Structure of the dual-polarized receiving antenna

    图  2  双极化接收天线加工实物图

    Figure  2.  Prototype of the fabricated dual-polarized receiving antenna

    图  3  双线极化接收天线仿真与测试的S参数比较

    Figure  3.  Comparison of the simulated and measured S-parameters for the dual-polarized receiving antenna

    图  4  双极化接收天线仿真与测试的方向图比较

    Figure  4.  Comparison of the simulated and measured radiation pattern of the dual-polarized receiving antenna

    图  5  5.8 GHz F类整流电路的结构和加工实物

    Figure  5.  Schematic and photograph of the designed 5.8 GHz class-F rectifier

    图  6  5.8 GHz F类整流电路仿真与测试的整流效率和输出电压比较

    Figure  6.  Comparison of simulated and measured rectifying efficiency and output voltage for the 5.8 GHz class-F rectifier

    图  7  双极化接收天线在谐波频率处测试的反射系数

    Figure  7.  Measured reflection coefficients of the dual-polarized receiving antenna at high harmonic frequencies

    图  8  接收天线和整流电路通过金属探针集成示意图

    Figure  8.  Schematic of the integration between receiving antenna and rectifier through metal probe

    图  9  线极化和双极化整流天线的加工实物

    Figure  9.  Photographs of the fabricated dual-polarized and single-polarized rectenna

    图  10  整流天线转换效率测试系统示意图

    Figure  10.  Schematic of the rectenna test system

    图  11  不同入射波极化角度下线极化整流天线的转换效率和输出直流功率与入射波功率密度的关系

    Figure  11.  Conversion efficiency and output DC power of linear-polarized rectenna under different incident angle and power densities

    图  12  不同入射波极化角度下双极化整流天线的转换效率和输出直流功率与入射波功率密度的关系

    Figure  12.  Conversion efficiency and output DC power of dual-polarized rectenna under different incident angle and power densities

    图  13  最佳入射功率密度下线极化和双极化整流天线输出直流功率与入射波极化角度的关系

    Figure  13.  Comparison of the output DC power between linear-polarized and dual-polarized rectenna under different incident angles

    表  1  双线极化2×2微带阵列天线结构参数

    Table  1.   Structural parameters of the designed dual-polarized receiving antenna (unit: mm)

    d1d2v1v2v3v4v5w1w2w3w4
    13.317.386.5258.818.515.40.60.71.60.4
    h1h2h3h4h5u1u2u3u4H
    6.514.45.511.715.30.490.71.80.79
    下载: 导出CSV

    表  2  5.8 GHz F类整流电路结构参数

    Table  2.   Structural parameters of the 5.8 GHz class-F rectifer (unit: mm)  

    l1l2l3l4l5l6l7z1z2
    83.42.81.21.87.35.32.40.6
    下载: 导出CSV

    表  3  与文献中发表的全极化整流天线性能比较

    Table  3.   Performance comparison among the published all-polarization rectenna

    referencefrequency/GHzpolarizationoptimum power density/(mW·cm−2)maximum conversion efficiency/%
    [12]5.8circular11.466.2
    [13]2.45dual83.7
    [16]5.8dual4.3270.8
    this work5.8dual1.4776.8
    下载: 导出CSV
  • [1] 林为干, 赵愉深, 文舸一. 微波输电, 现代化建设的生力军[J]. 科技导报, 1994, 12(3):31-34. (Lin Weigan, Zhao Yushen, Wen Geyi, et al. Power transmission by microwave—a propulsion for modernization construction[J]. Science and Technology Review, 1994, 12(3): 31-34
    [2] 杨雪霞. 微波输能技术概述与整流天线研究新进展[J]. 电波科学学报, 2009, 24(4):770-779. (Yang Xuexia. Overview of microwave power transmission technology and recent progress of rectennas[J]. Chinese Journal of Radio Science, 2009, 24(4): 770-779 doi: 10.3969/j.issn.1005-0388.2009.04.036
    [3] Matsumoto H. Research on solar power satellites and microwave power transmission in Japan[J]. IEEE Microwave Magazine, 2002, 3(4): 36-45. doi: 10.1109/MMW.2002.1145674
    [4] Brown W, Mims J, Heenan N. An experimental microwave-powered helicopter[C]// 1958 IRE International Convention Record. 1966: 225-235.
    [5] Jull G. SHARP (stationary high altitude relay platform), Part A: Technical feasibility of microwave-powered airplanes (Summary Report)[R]. 1986.
    [6] 李奥博. 无线能量传输系统整流技术研究[D]. 上海: 上海交通大学, 2012: 53-55.

    Li Aobo. Research on rectifier technology for wireless power transmission system[D]. Shanghai: Shanghai Jiaotong University, 2012: 53-55).
    [7] 杨弋斓, 刘长军. 一种新型微带贴片微波整流天线设计[J]. 应用科技, 2017, 44(4):60-63. (Yang Yilan, Liu Changjun. Design of a novel microwave rectenna with microstrip patch[J]. Applied Science and Technology, 2017, 44(4): 60-63
    [8] 谭冠南. 毫米波整流天线及阵列研究[D]. 上海: 上海大学, 2016. : 57-62.

    Tan Guannan. Research on millimeter-wave rectennas and arrays[D]. Shanghai: Shanghai University, 2016: 57-62.
    [9] 和历阳, 严安, 李勋勇, 等. 一款小型化2.45 GHz整流天线的设计[J]. 应用科技, 2019, 46(5):63-66. (He Liyang, Yan An, Li Xunyong, et al. Design of a miniaturized rectenna at 2.45 GHz[J]. Applied Science and Technology, 2019, 46(5): 63-66
    [10] Chen Qiang, Liu Zhihao, Cui Yuguo, et al. A metallic waveguide-integrated 35 GHz rectenna with high conversion efficiency[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(8): 821-824. doi: 10.1109/LMWC.2020.3002163
    [11] Li Lin, Du Jinxin, Yang Xuexia. Dual polarized rectenna and array at X-band with high-efficiency[C]//2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2019: 1-3.
    [12] Yang Yang, Li Jun, Li Lu, et al. A 5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1276-1280. doi: 10.1109/LAWP.2018.2842105
    [13] Lou Xin, Yang Guomin. A dual linearly polarized rectenna using defected ground structure for wireless power transmission[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 828-830. doi: 10.1109/LMWC.2018.2860285
    [14] Haboubi W, Takhedmit H, Luk J D L S, et al. An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band[J]. Progress in Electromagnetics Research, 2014, 148: 31-39. doi: 10.2528/PIER14031103
    [15] Chen Qiang, Chen Xing, Cai Haotian, et al. Schottky diode large-signal equivalent-circuit parameters extraction for high-efficiency microwave rectifying circuit design[J]. IEEE Trans Circuits and Systems II: Express Briefs, 2020, 67(11): 2722-2726. doi: 10.1109/TCSII.2020.2977076
    [16] 杨雪霞, 梅欢, 朱戈亮. 双极化方向回溯整流天线阵列设计与实验[J]. 电波科学学报, 2018, 33(4):380-386. (Yang Xuexia, Mei Huan, Zhu Geliang. Design and experiments of dual-polarized retrodirective rectenna array[J]. Chinese Journal of Radio Science, 2018, 33(4): 380-386
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1612
  • HTML全文浏览量:  310
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2020-11-30
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回