留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

325 MHz微波栅控高压型热阴极电子枪的设计研究

夏乾旭 赵全堂 宗阳 曹树春 李中平 申晓康 张子民

夏乾旭, 赵全堂, 宗阳, 等. 325 MHz微波栅控高压型热阴极电子枪的设计研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.200310
引用本文: 夏乾旭, 赵全堂, 宗阳, 等. 325 MHz微波栅控高压型热阴极电子枪的设计研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.200310
Xia Qianxu, Zhao Quantang, Zong Yang, et al. Design of 325 MHz RF grid-controlled high voltage thermionic cathode electron gun[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.200310
Citation: Xia Qianxu, Zhao Quantang, Zong Yang, et al. Design of 325 MHz RF grid-controlled high voltage thermionic cathode electron gun[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.200310

325 MHz微波栅控高压型热阴极电子枪的设计研究

doi: 10.11884/HPLPB202133.200310
基金项目: 国家重点研发计划项目(2016YFE0104900)
详细信息
    作者简介:

    夏乾旭(1996—),男,硕士研究生,从事微波栅控电子枪设计方面的研究;1206158607@qq.com

    通讯作者:

    张子民(1972—),男,博士,从事电子加速器设计方面的研究;zzm@impcas.ac.cn

  • 中图分类号: TL53

Design of 325 MHz RF grid-controlled high voltage thermionic cathode electron gun

  • 摘要: 高重复频率、高平均流强的电子枪具有十分广泛的应用。设计了一台束团重复频率为325 MHz在CW模式工作的微波栅控高压型热阴极电子枪,并详细论述了该类型微波栅控电子枪的实验原理,在该类型电子枪的设计中,首先需要利用仿真模拟软件EGUN、POISSON(PoissonSuperfish)、GPT(General Particle Tracer)完成300 kV直流高压电子枪的结构设计,并进行束流动力学验证计算。为将微波馈入该直流电子枪的阴栅极之间,进行了该微波栅控电子枪的供电系统设计,完成了从射频功率源到同轴热阴极的阻抗匹配方案,设计了一种325 MHz双模式同轴供电器件,并进行了验证与分析。
  • 图  1  微波栅控热阴极高压型电子枪原理示意图

    Figure  1.  Principle of grid-controlled high voltage thermionic cathode electron gun

    图  2  束团出射相位图

    Figure  2.  Diagram of the phase that electron beam can escape

    图  3  EGUN模拟-300 KV直流电子枪束流结果图

    Figure  3.  The -300 kV DC electron gun simulated resultin EGUN

    图  4  距阴极55 cm处沿径向束流密度分布图

    Figure  4.  Radial beam current distribution at 55 cm from anode

    图  5  束团半径变化示意图

    Figure  5.  Diagram of bunch radius variation

    图  6  距阴极55 cm处束团能量分散图

    Figure  6.  Longitudinal energy distribution at z=55 cm

    图  7  均方根发射度随时间变化曲线图

    Figure  7.  Root mean square emittance change with time

    图  8  距阴极55 cm处束团横向相空间分布图

    Figure  8.  Transverse phase space distribution at z=55 cm

    图  9  电路连接示意图

    Figure  9.  Diagram of circuit connection

    图  10  阻抗匹配史密斯圆图

    Figure  10.  The path (blueline) of impedance matching in Smith chart

    图  11  双模式同轴供电器件尺寸图

    Figure  11.  The size of dual mode coaxial power supply device

    图  12  输入端口反射系数随频率变化图

    Figure  12.  The reflection coefficient varies with frequency

    图  13  传输系数随频率变化图

    Figure  13.  The transmission coefficient varies with frequency

    表  1  电子枪设计参数

    Table  1.   Parameters of electron gun

    Parametersnumber
    Voltage/kV −300
    Frequency/MHz 325
    Working mode CW
    Beam current/mA 5
    Beam Transverseemittance/mm·mrad <5
    Energy spread <0.5%
    下载: 导出CSV
  • [1] 高峰, 林力, 刘宇昊, 等. 医用同位素生产现状及技术展望[J]. 同位素, 2016, 29(2):116-120. (Gao Feng, Lin Li, Liu Yuhao, et al. Production situation and technology prospect of medical isotopes[J]. Journal of Isotopes, 2016, 29(2): 116-120 doi: 10.7538/tws.2016.29.02.0116
    [2] Martins M N, Silva T F. Electron accelerators: History, applications, and perspectives[J]. Radiation Physics and Chemistry, 2014, 95: 78-85. doi: 10.1016/j.radphyschem.2012.12.008
    [3] NagaiY. Medical isotope production using accelerator neutrons[C]//11th International Topical Meeting on Nuclear Applications of Accelerators. 2013: 47-49.
    [4] 金晓, 黎明, 许州, 等. 中国工程物理研究院远红外自由电子激光实验研究[J]. 高能物理与核物理, 2006, 30(s1):96-98. (Jin Xiao, Li Ming, Xu Zhou, et al. Experiment study on the CAEP FIR-FEL[J]. High Energy Physics and Nuclear Physics, 2006, 30(s1): 96-98
    [5] Xu Hanxun, Shi Jiaru, Du Yingchao, et al. Development of an L-band photocathode RF gun at Tsinghua University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164675. doi: 10.1016/j.nima.2020.164675
    [6] 邓文娟. GaAs阵列光电阴极的结构设计与制备研究[D]. 武汉: 华中科技大学, 2018.

    Deng Wenjuan. Research on structure design and preparation of GaAs wire-array photocathode[D]. Wuhan: Huazhong University of Science and Technology, 2018
    [7] Bylinskii I, Ames F, Baartman R, et al. An electron linac photo-fission driver for the rare isotope program at TRIUMF[C]//Proceedings of the 23rd Particle Accelerator Conference. Vancouver, Canada, 2009.
    [8] Ortega J M, Glotin F, Prazeres R. Extension in far-infrared of the CLIO free-electron laser[J]. Infrared physics & technology, 2006, 49(1-2): 133-138.
    [9] Jongen Y, Abs M, Genin F, et al. The Rhodotron, a new 10 MeV, 100 kW, cw metric wave electron accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 79(1-4): 865-870. doi: 10.1016/0168-583X(93)95487-P
    [10] 易春蓉. 基于碳纳米管及其复合阴极的场致发射器件的制备与性能[D]. 上海: 华东师范大学, 2020.

    Yi Chunrong. Preparation and performance of field-emission devices based on carbon nanotubes and their composite cathodes[D]. Shanghai: East China Normal University, 2020
    [11] 沈春英, 丘泰, 李晓云. 高性能浸渍型阴极材料研究进展[J]. 材料导报, 2005, 19(3):25-27. (Shen Chunying, Qiu Tai, Li Xiaoyun. Advances in dispenser cathodes materials with high properties[J]. Materials Review, 2005, 19(3): 25-27 doi: 10.3321/j.issn:1005-023X.2005.03.008
    [12] Shintake T, Tanaka T, Hara T, et al. Status of SPring-8 compact SASE source FEL project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 382-387.
    [13] Asaka T, Inagaki T, Magome T, et al. Low-emittance radio-frequency electron gun using a gridded thermionic cathode[J]. Physical Review Accelerators and Beams, 2020, 23: 063401. doi: 10.1103/PhysRevAccelBeams.23.063401
    [14] Park S J, Oh J S, Bak J S, et al. 2.856-GHz Modulation of Conventional Triode Electron Gun[J]. arXiv preprint physics/0008035, 2000)
    [15] Park S J, Hwang W H, Cho M H, et al. Design of coaxial resonant cavity for triode RF Gun[C]//KEK Proceedings. National Laboratory for High Energy Physics, 1998: 746-748.
    [16] Auslender V L, Batazova M A, Kuznetsov G I, et al. Triode RF gun for linear electron accelerators[C]//The 3rd Asian Particle Accelerator Conference APAC. 2004: 273-275.
    [17] Volkov V N, Arbuzov V, Kenzhebulatov E, et al. Latest results of CW 100 mA electron RF gun for Novosibirsk ERL Based FEL[C]//Proceedings of the 29th Linear Accelerator Conference(LINAC'18). Beijing, China: JACOW Publishing, 2019: 598-600.
    [18] 周方洁. 行波管电子枪热初速的理论及分析[D]. 成都: 电子科技大学, 2018.

    Zhou Fangjie. Theory and analysis of thermal initial velocity of traveling wave tube electron gun[D]. Chengdu: University of Electronic Science and Technology, 2018
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2021-03-15
  • 网络出版日期:  2021-03-26

目录

    /

    返回文章
    返回