留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

G波段扩展互作用速调管宽带注波互作用系统研究

曾鑫 曲兆伟 薛谦忠

曾鑫, 曲兆伟, 薛谦忠. G波段扩展互作用速调管宽带注波互作用系统研究[J]. 强激光与粒子束, 2021, 33: 033007. doi: 10.11884/HPLPB202133.200313
引用本文: 曾鑫, 曲兆伟, 薛谦忠. G波段扩展互作用速调管宽带注波互作用系统研究[J]. 强激光与粒子束, 2021, 33: 033007. doi: 10.11884/HPLPB202133.200313
Zeng Xin, Qu Zhaowei, Xue Qianzhong. Research of G-band extended interaction klystron broadband beam-wave interaction system[J]. High Power Laser and Particle Beams, 2021, 33: 033007. doi: 10.11884/HPLPB202133.200313
Citation: Zeng Xin, Qu Zhaowei, Xue Qianzhong. Research of G-band extended interaction klystron broadband beam-wave interaction system[J]. High Power Laser and Particle Beams, 2021, 33: 033007. doi: 10.11884/HPLPB202133.200313

G波段扩展互作用速调管宽带注波互作用系统研究

doi: 10.11884/HPLPB202133.200313
基金项目: 国家重点研发计划项目(2019YFA0210201);国家自然科学基金项目(11475182)
详细信息
    作者简介:

    曾鑫:曾 鑫(1996—),男,硕士研究生,主要研究方向为新型太赫兹辐射源技术;zengxin199609@163.com

    通讯作者:

    薛谦忠(1962—),男,研究员,博士生导师,长期从事新型太赫兹毫米波源与技术、天线理论及其应用研究;Qianzhong_xue@mail.ie.ac.cn

  • 中图分类号: TN122

Research of G-band extended interaction klystron broadband beam-wave interaction system

  • 摘要: 扩展互作用速调管采用多间隙分布作用谐振腔和全金属平面结构,互作用电路短、单位长度增益高,其平面化结构特征与现代微加工工艺相兼容,已成为发展太赫兹高功率源的研究热点,进一步展宽扩展互作用速调管放大器的带宽成为拓展其应用的关键技术问题。设计了一种G波段5腔多间隙注波互作用电路,采用参差调谐技术扩展群聚段带宽和滤波器加载技术扩展输出段带宽,通过CST软件对结构参数优化和输出特性模拟仿真,结果表明:在电子注电压19 kV,电流300 mA,输入功率120 mW时,获得输出功率222 W,电子效率3.89%,增益32.67 dB,3 dB瞬时带宽达到了1.5 GHz。
  • 图  1  多间隙谐振腔结构示意图

    Figure  1.  Schematic diagrams of multi-gap resonantor

    图  2  多间隙谐振腔内的电场分布

    Figure  2.  Electric field distribution in multi-gap resonantor

    图  3  间隙纵向电场沿漂移管的分布

    Figure  3.  Gap axial electric field distribution along drifting tube

    图  4  2π模与相邻模式的频率间隔

    Figure  4.  Frequency separation of 2π mode with adjacent mode

    图  5  2π模频率随间隙宽边w的变化

    Figure  5.  Variation of 2π mode frequency with gap broadside

    图  6  滤波器加载输出回路模型

    Figure  6.  Model of filter loading output circuit

    图  7  输出回路群时延特性

    Figure  7.  Group delay time of output circuit

    图  8  220.1 GHz和220.9 GHz处的电场分布

    Figure  8.  Electric field distribution at 220.1 GHz and 220.9 GHz

    图  9  输出腔频率响应曲线

    Figure  9.  Frequency response curves of output cavity

    图  10  注波互作用系统仿真模型

    Figure  10.  Simulation model of beam-wave interaction system

    图  11  输出功率及信号频谱

    Figure  11.  Output power and signal spectrum

    图  12  电子注相空间图

    Figure  12.  Image of the electron beam in phase space

    图  13  输入输出转换特性曲线

    Figure  13.  Input-output characteristic curve

    图  14  注波互作用系统频率响应曲线

    Figure  14.  Frequency response of beam-wave interaction system

    表  1  各腔间隙宽边、频率、R/QQ

    Table  1.   Gap broadside,frequency,R/Q and Q of each cavity

    cavityw/mmf/GHzR/Q)/ΩQ
    1 0.700 219.96 235.8 89.4
    2 0.707 219.59 174.5 401.6
    3 0.703 220.64 173.9 402.9
    4 0.701 221.16 173.5 402.7
    5 0.700 219.96 211.7 95.2
    下载: 导出CSV
  • [1] Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2] Kemp T F, Dannatt H R W, Barrow N S, et al. Dynamic nuclear polarization enhanced NMR at 187 GHz/284 MHz using an extended interaction klystron amplifier[J]. Journal of Magnetic Resonance, 2016, 265: 77-82. doi: 10.1016/j.jmr.2016.01.021
    [3] 胡林林, 曾造金, 陈洪斌, 等. 毫米波/太赫兹扩展互作用速调管放大器的应用及研究进展[J]. 电子学报, 2019, 47(1):211-219. (Hu Linlin, Zeng Zaojin, Chen Hongbin, et al. Application and development of extended interaction klystrons in millimeter-wave and terahertz band[J]. Acta Electronica Sinica, 2019, 47(1): 211-219 doi: 10.3969/j.issn.0372-2112.2019.01.028
    [4] Hyttinen M, Roitman A, Horoyski P, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//Proceedings of the 2008 IEEE International Vacuum Electronics Conference. 2008: 297.
    [5] Patrick M A, Holt J A, Joye C D, et al. Range resolved mode mixing in a large volume for the mitigation of speckle and strategic target orientation requirements in active millimeter-wave imaging[J]. Journal of the Optical Society of America A, 2015, 32(4): 637-646. doi: 10.1364/JOSAA.32.000637
    [6] 韦莹, 杨继涛, 周军, 等. W波段分布作用速调管的研制[J]. 强激光与粒子束, 2020, 32:103007. (Wei Ying, Yang Jitao, Zhou Jun, et al. Design of a W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103007 doi: 10.11884/HPLPB202032.200207
    [7] Li Renjie, Ruan Cunjun, Zhang Huangfeng. Design and optimization of G-band extended interaction klystron with high output power[J]. Physics of Plasmas, 2018, 25: 033107. doi: 10.1063/1.5012018
    [8] Li Renjie, Ruan Cunjun, Zhang Huangfeng, et al. Theoretical design and numerical simulation of beam-wave Interaction for G-band unequal-length slots EIK with rectangular electron beam[J]. IEEE Transactions on Electron Devices, 2018, 65(8): 3500-3506. doi: 10.1109/TED.2018.2846580
    [9] Li Renjie, Ruan Cunjun, Zhang Huangfeng, et al. Optimization and improvement of output performance in G-band extended interaction klystron[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40(1): 5-16. doi: 10.1007/s10762-018-0546-7
    [10] 张长青, 冯进军, 蔡军, 等. G波段500 W带状注扩展互作用速调管设计研究[J]. 强激光与粒子束, 2020, 32:103003. (Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003 doi: 10.11884/HPLPB202032.200195
    [11] 张长青, 阮存军, 王树忠, 等. 梯形结构高功率扩展互作用速调管[J]. 红外与毫米波学报, 2015, 34(3):307-313. (Zhang Changqing, Ruan Cunjun, Wang Shuzhong, et al. High-power extended-interaction klystron with ladder-type structure[J]. Journal of Infrared and Millimeter Wave, 2015, 34(3): 307-313 doi: 10.11972/j.issn.1001-9014.2015.03.010
    [12] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010: 200-246.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010: 200-246
    [13] 葛萌, 王勇. Ka波段滤波器加载三间隙耦合腔输出回路的仿真和测试[J]. 真空科学与技术学报, 2013, 33(3):219-223. (Ge Meng, Wang Yong. Simulation and cold test of Ka-band filter loaded three-gap coupled output cavity[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(3): 219-223 doi: 10.3969/j.issn.1672-7126.2013.03.05
    [14] 谢兴娟, 丁耀根, 刘濮鲲, 等. 群时延时间法求解速调管输出腔的特性参数[J]. 强激光与粒子束, 2012, 24(1):152-156. (Xie Xingjuan, Ding Yaogen, Liu Pukun, et al. Characteristic parameter calculation for output cavity of klystron with group delay time method[J]. High Power Laser and Particle Beams, 2012, 24(1): 152-156 doi: 10.3788/HPLPB20122401.0152
    [15] 谢兴娟, 黄传禄, 董玉和, 等. 双间隙同轴腔加载波导滤波器输出回路设计[J]. 强激光与粒子束, 2012, 24(8):1925-1930. (Xie Xingjuan, Huang Chuanlu, Dong Yuhe, et al. Output circuit design for double gap coaxial cavity loaded with waveguide filter[J]. High Power Laser and Particle Beams, 2012, 24(8): 1925-1930 doi: 10.3788/HPLPB20122408.1925
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  28
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 修回日期:  2021-02-08
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回