留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氘化物阴极真空弧放电光斑分布

董攀 刘尔祥 李杰 江孝国 王韬 石金水 龙继东

董攀, 刘尔祥, 李杰, 等. 氘化物阴极真空弧放电光斑分布[J]. 强激光与粒子束, 2021, 33: 034006. doi: 10.11884/HPLPB202133.200322
引用本文: 董攀, 刘尔祥, 李杰, 等. 氘化物阴极真空弧放电光斑分布[J]. 强激光与粒子束, 2021, 33: 034006. doi: 10.11884/HPLPB202133.200322
Dong Pan, Liu Erxiang, Li Jie, et al. Luminous spot distribution of vacuum arc discharge with deuteride cathode[J]. High Power Laser and Particle Beams, 2021, 33: 034006. doi: 10.11884/HPLPB202133.200322
Citation: Dong Pan, Liu Erxiang, Li Jie, et al. Luminous spot distribution of vacuum arc discharge with deuteride cathode[J]. High Power Laser and Particle Beams, 2021, 33: 034006. doi: 10.11884/HPLPB202133.200322

氘化物阴极真空弧放电光斑分布

doi: 10.11884/HPLPB202133.200322
基金项目: 国家自然科学基金项目(11975217)
详细信息
    作者简介:

    董攀:董 攀(1983—),男,博士,副研究员,主要研究方向为等离子体放电及诊断;panner95@163.com

    通讯作者:

    李 杰(1986—),男,博士研究生,副研究员,主要研究方向为等离子体放电及束流动力学;nlijie@sina.com

  • 中图分类号: O461.2

Luminous spot distribution of vacuum arc discharge with deuteride cathode

  • 摘要: 氘化物真空弧放电在许多领域均有应用,如无损检测、石油探井、中子活化分析等。和金属阴极不同,氘化物阴极放电时会释放大量的气体分子,表现出许多不同性质。采用放大镜头和ICCD相机观察了氘化物阴极真空弧放电光斑分布。测量系统的空间分辨率约为5 μm,时间分辨率最小2 ns。放电脉冲半高全宽(FWHM)0.9 μs,弧流波形为半周期正弦波。实验结果表明,氘化物真空弧放电时,所有阴极斑聚集为一个群落,表现为一个大光斑;在液滴作用下,阴极斑群落偶尔也会分裂为两个或多个群落;光斑形状不受弧流影响,但面积和亮度会随弧流增加而增大。氘化物阴极放电斑点聚集有利于产生高密度等离子体,提高放电效率。
  • 图  1  实验布局示意图

    Figure  1.  Schematic of the experimental layout

    图  2  放大镜头和ICCD相机拍摄的分辨率板图像

    Figure  2.  Resolution board image taken by zoom lens and ICCD camera

    图  3  弧流和弧压波形及拍摄时刻

    Figure  3.  Typical waveforms of arc current and arc voltage, and photographic moments

    图  4  不同时刻放电光斑图像

    Figure  4.  Luminous images at different moments

    图  5  两个放电光斑的情形

    Figure  5.  Situation of two luminous spots

    图  6  曝光时间100 ns时光斑图像

    Figure  6.  Luminous image at 100 ns exposure time

    图  7  不同弧流下放电光斑

    Figure  7.  Luminous images at different arc currents

  • [1] MacGill R A, Dickinson M R, Brown I G. Vacuum arc ion sources—Micro to macro[J]. Review of Scientific Instruments, 1996, 67(3): 1210-1212. doi: 10.1063/1.1146734
    [2] Ying Jianjian, Xiao Xiangheng, Dai Zhigao, et al. Synthesis of graphene by MEVVA source ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 305: 29-32. doi: 10.1016/j.nimb.2013.04.044
    [3] Hollinger R, Galonska M. Status of vacuum arc ion source development for injection of high current uranium ion beams into the GSI accelerator facility[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 239(3): 227-244. doi: 10.1016/j.nimb.2005.04.062
    [4] Wang J L, Zhang G L, Wang Y N, et al. Grid-shadow effect in grid-enhanced plasma source ion implantation[J]. Surface and Coatings Technology, 2005, 192(1): 101-105. doi: 10.1016/j.surfcoat.2004.04.069
    [5] 米夏兹 Г А. 真空放电物理和高功率脉冲技术[M]. 李国政, 译. 北京: 国防工业出版社, 2007: 149-151.

    Месяц Г А. Vacuum discharge physics and high power pulse technology[M]. Li Guozheng, trans. Beijing: National Defense Industry Press, 2007: 149-151
    [6] Beilis I I. Vacuum arc cathode spot theory: history and evolution of the mechanisms[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 3412-3433. doi: 10.1109/TPS.2019.2904324
    [7] Anders A. Cathodic arcs: from fractal spots to energetic condensation[M]. New York: Springer, 2008: 183-186.
    [8] 拉弗蒂J M. 真空电弧理论和应用[M]. 程积高, 译. 北京: 机械工业出版社, 1985: 148-149.

    Lafferty J M. Vacuum arcs theory and application[M]. Cheng Jigao, trans. Beijing: China Machine Press, 1985: 148-149
    [9] 唐建, 卢彪, 伍春雷, 等. 条纹相机在真空弧离子源等离子体诊断中的应用[J]. 强激光与粒子束, 2015, 27:084001. (Tang Jian, Lu Biao, Wu Chunlei, et al. Application of a streak camera to diagnosis of plasma in vacuum arc ion source[J]. High Power Laser and Particle Beams, 2015, 27: 084001 doi: 10.11884/HPLPB201527.084001
    [10] Aleksandrov V D, Bogolubov E P, Bochkarev O V, et al. Application of neutron generators for high explosives, toxic agents and fissile material detection[J]. Applied Radiation and Isotopes, 2005, 63(5/6): 537-543.
    [11] 郑世平, 秦爱玲, 赵舒平. 测井中子发生器[J]. 地球物理学进展, 2009, 24(4):1521-1526. (Zheng Shiping, Qin Ailing, Zhao Shuping. Well logging neutron generator[J]. Progress in Geophysics, 2009, 24(4): 1521-1526 doi: 10.3969/j.issn.1004-2903.2009.04.047
    [12] Walko R J, Rochau G E. A high output neutron tube using an occluded gas ion source[J]. IEEE Transactions on Nuclear Science, 1981, 28(2): 1531-1534. doi: 10.1109/TNS.1981.4331459
    [13] Shkol’nik S M. Arc discharges with gas-impregnated cathodes in vacuum[J]. IEEE Transactions on Plasma Science, 2001, 29(5): 675-683. doi: 10.1109/27.964453
    [14] Barengolts S A, Karnaukhov D Y, Nikolaev A G, et al. Generation of hydrogen isotope ions in a vacuum arc discharge with a composite zirconium deuteride cathode[J]. Technical Physics, 2015, 60(7): 989-999. doi: 10.1134/S1063784215070051
    [15] 陈磊, 金大志, 程亮, 等. 含氢电极脉冲放电等离子体特性诊断[J]. 强激光与粒子束, 2011, 23(5):1361-1364. (Chen Lei, Jin Dazhi, Cheng Liang, et al. Diagnosis of plasmas generated by pulsed vacuum arc discharge at hydrogen impregnated electrodes[J]. High Power Laser and Particle Beams, 2011, 23(5): 1361-1364 doi: 10.3788/HPLPB20112305.1361
    [16] 董攀, 李杰, 郑乐, 等. 真空弧放电TiH合金阴极表面形貌分析[J]. 强激光与粒子束, 2018, 30:014001. (Dong Pan, Li Jie, Zheng Le, et al. Surface morphology analysis of TiH cathode in vacuum arc discharge[J]. High Power Laser and Particle Beams, 2018, 30: 014001 doi: 10.11884/HPLPB201830.170356
    [17] Kaufmann H T C, Cunha M D, Benilov M S, et al. Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different mechanisms and ejection of droplets[J]. Journal of Applied Physics, 2017, 122: 163303. doi: 10.1063/1.4995368
  • 加载中
图(7)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  28
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-25
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回