留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高选择性可调带通与带阻可切换滤波器

杨红 张德伟 王显 张俊杰 周东方 付宇璠

杨红, 张德伟, 王显, 等. 一种高选择性可调带通与带阻可切换滤波器[J]. 强激光与粒子束, 2021, 33: 043001. doi: 10.11884/HPLPB202133.200327
引用本文: 杨红, 张德伟, 王显, 等. 一种高选择性可调带通与带阻可切换滤波器[J]. 强激光与粒子束, 2021, 33: 043001. doi: 10.11884/HPLPB202133.200327
Yang Hong, Zhang Dewei, Wang Xian, et al. A highly selective tunable filter with switchable bandpass and bandstop frequency response[J]. High Power Laser and Particle Beams, 2021, 33: 043001. doi: 10.11884/HPLPB202133.200327
Citation: Yang Hong, Zhang Dewei, Wang Xian, et al. A highly selective tunable filter with switchable bandpass and bandstop frequency response[J]. High Power Laser and Particle Beams, 2021, 33: 043001. doi: 10.11884/HPLPB202133.200327

一种高选择性可调带通与带阻可切换滤波器

doi: 10.11884/HPLPB202133.200327
基金项目: 核高基重大专项(2013ZX01010003-004)
详细信息
    作者简介:

    杨 红(1996—),女,硕士,主要从事微波电路方向的研究;1525600410@qq.com

  • 中图分类号: TN715

A highly selective tunable filter with switchable bandpass and bandstop frequency response

  • 摘要: 设计了一种高选择性可调带通与带阻可切换微带滤波器。在微带谐振器及枝节末端加载变容二极管实现中心频率的可调;在输入与输出端口馈线之间,利用PIN二极管实现滤波器阻带和通带特性的切换。采用奇偶模的方法对滤波器结构进行分析,通过对奇偶模频率的调节实现了频率调节过程中的恒定绝对带宽。同时,在输入与输出馈线间引入源与负载耦合,使得频带两侧各有一个传输零点,且传输零点在整个频率调谐范围内相对位置几乎不变。因此,在整个频率调节范围内,滤波器实现了高选择性及良好的带外抑制能力。最终设计出的可调带阻滤波器的频率调谐范围为5.58~5.89 GHz,绝对带宽80 MHz±5 MHz,阻带衰减优于14 dB;可调带通滤波器的频率调谐范围为5.42~5.79 GHz,绝对带宽120 MHz±5 MHz,插入损耗1.69~2.25 dB,回波损耗优于13 dB。同时,该滤波器具有0.28λg×0.62λgλg是可调频率范围中心频率的波长)的紧凑结构尺寸。实验和仿真结果一致性较好。
  • 图  1  可调滤波器结构图

    Figure  1.  Schematic diagram of proposed tunable filter

    图  2  不同lstubf0l1变化情况

    Figure  2.  f0 versus l1 under different values of lstub

    图  3  变容二级管加载谐振器等效电路图

    Figure  3.  Equivalent circuits of resonator loaded with three varactor diodes

    图  4  耦合拓扑图

    Figure  4.  Schematic of coupling topology

    图  5  可调滤波器实物图

    Figure  5.  Photograph of the fabricated tunable filter

    图  6  可调带通滤波器仿真及实物测试结果

    Figure  6.  Simulated and measured results of the fabricated tunable filter with bandpass frequency response

    Note: short dot, state 1; dash dot, state 2; dot, state 3; short dash dot, state 4; short dash, state 5.

    图  7  可调带阻滤波器仿真及实物测试结果

    Figure  7.  Simulated and measured results of the fabricated tunable filter with bandstop frequency response

    Note: short dot, state 1; dash dot, state 2; dot, state 3; short dash dot, state 4; short dash, state 5.

    表  1  列出的带通滤波器5个状态的性能参数及控制电压值

    Table  1.   Performance parameters and control voltage values of 5 states of bandpass filter (BPF)

    statef0/GHzBW/MHzV1/VV2/VV3/V
    1 5.42 115.4 6.34 9.83 0
    2 5.49 117.5 6.65 10.05 0
    3 5.56 120.9 7.12 10.34 0
    4 5.71 117.4 7.37 10.56 0
    5 5.79 120.1 7.51 10.79 0
    下载: 导出CSV

    表  2  列出的带阻滤波器5个状态的性能参数及控制电压值

    Table  2.   Performance parameters and control voltage values of 5 states of bandstop filter (BSF)

    statef0/GHzBW/MHzV1/VV2/VV3/V
    1 5.58 85.3 6.65 10.58 0.89
    2 5.64 76.2 6.95 10.95 0.89
    3 5.71 77.6 7.12 11.13 0.89
    4 5.80 76.1 7.37 11.69 0.89
    5 5.89 78.5 7.51 11.94 0.89
    下载: 导出CSV

    表  3  与之前的微带可调带通-带阻可切换滤波器的性能对比

    Table  3.   Performance comparison of the present design with previous reported tunable microstrip BPFs and BSFs

    designfrequency tuning/GHz
    (bandpass/bandstop)
    BW3dB/MHz or FBW/%
    (bandpass/bandstop)
    insertion loss/dB
    (bandpass)
    return loss/dB
    (bandpass)
    rejection level
    (bandstop)
    circuit size/
    λ2g
    of Ref.[15]0.68~0.985/0.725~0.995N/A2.2~5.9>13>20N/A
    of Ref.[16]1.9~2.32.5~3/3~73.3~6.5>10>150.188
    of Ref. [17]2.9~3.645~230N/AN/A>20>0.333
    of this paper5.42~5.79/5.58~5.89(120±5)/(80±5)1.69~2.25>13>140.178
    下载: 导出CSV
  • [1] Chen Chifeng, Wang Guoyun, Li Honghen, et al. Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 500-502. doi: 10.1109/LMWC.2018.2831440
    [2] Karpuz C, Gorur A K, Emur M, et al. Quad-band microstrip bandstop filter design using dual-mode open loop resonators having thin film capacitors[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(11): 873-875. doi: 10.1109/LMWC.2016.2615092
    [3] Feng Wenjie, Hong Meiling, Che Wenquan, et al. Dual-band microstrip bandstop filter with multiple transmission poles using coupled lines[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 236-238. doi: 10.1109/LMWC.2017.2661704
    [4] Xiang Qianyin, Feng Quanyuan, Huang Xiaoguo, et al. Electrical tunable microstrip LC bandpass filters with constant bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(3): 1124-1130. doi: 10.1109/TMTT.2013.2241781
    [5] Tsai H Y, Huang Tingyi, Wu R B. Varactor-tuned compact dual-mode tunable filter with constant passband characteristics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(9): 1399-1407. doi: 10.1109/TCPMT.2016.2599205
    [6] Feng Wenjie, Shang Yuxia, Che Wenquan, et al. Multifunctional reconfigurable filter using transversal signal-interaction concepts[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 980-982. doi: 10.1109/LMWC.2017.2750022
    [7] Wong P W, Hunter I. Electronically tunable filters[J]. IEEE Microwave Magazine, 2009, 10(6): 46-54. doi: 10.1109/MMM.2009.933593
    [8] Hunter I C, Rhodes J D. Electronically tunable microwave bandpass filters[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(9): 1354-1360. doi: 10.1109/TMTT.1982.1131260
    [9] Kim B W, Yun S W. Varactor-tuned combline bandpass filter using step-impedance microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(4): 1279-1283. doi: 10.1109/TMTT.2004.825626
    [10] 王显, 张德伟, 刘庆, 等. 一种高选择性的可调0.83~2.15 GHz带通滤波器[J]. 强激光与粒子束, 2019, 31:113001). (Wang Xian, Zhang Dewei, Liu Qing, et al. A tunable 0.83-2.15 GHz bandpass filter with high selectivity[J]. High Power Laser and Particle Beams, 2019, 31: 113001)
    [11] Ebrahimi A, Baum T, Scott J, et al. Continuously tunable dual-mode bandstop filter[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(5): 419-421. doi: 10.1109/LMWC.2018.2821841
    [12] Li Qun, Chen Xiong, Yang Tao, et al. Tunable bandstop filter with high suppression and wide tuning range[J]. Electronics Letters, 2019, 55(16): 910-912. doi: 10.1049/el.2019.1855
    [13] Chan K Y, Ramer R. Waveguide switchable bandstop and bandpass filters using RF MEMS switches[C]//Proceedings of 2019 International Conference on Microwave and Millimeter Wave Technology. 2019: 19-22.
    [14] Fan Maoyu, Song Kaijun, Zhu Yu, et al. Compact bandpass-to-bandstop reconfigurable filter with wide tuning range[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(3): 198-200. doi: 10.1109/LMWC.2019.2892846
    [15] 李润铄. 新型平面可调带通-带阻滤波器的研究[D]. 广州: 华南理工大学, 2019: 43-50.

    Li Runshuo. Research on novel planar tunable bandpass-to-bandstop filter[D]. Guangzhou: South China University of Technology, 2019: 43-50).
    [16] Yang Tao, Rebeiz G M. Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(7): 2288-2297. doi: 10.1109/TMTT.2017.2679182
    [17] Psychogiou D, Gómez-García R, Peroulis D. Fully-reconfigurable bandpass/bandstop filters and their coupling-matrix representation[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(1): 22-24. doi: 10.1109/LMWC.2015.2505635
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1218
  • HTML全文浏览量:  284
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-02-05
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回