留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态Marx发生器的自动控制研究

饶俊峰 杨世龙 王永刚 姜松 李孜

饶俊峰, 杨世龙, 王永刚, 等. 固态Marx发生器的自动控制研究[J]. 强激光与粒子束, 2021, 33: 045003. doi: 10.11884/HPLPB202133.200328
引用本文: 饶俊峰, 杨世龙, 王永刚, 等. 固态Marx发生器的自动控制研究[J]. 强激光与粒子束, 2021, 33: 045003. doi: 10.11884/HPLPB202133.200328
Rao Junfeng, Yang Shilong, Wang Yonggang, et al. Research on automatic control of solid state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 045003. doi: 10.11884/HPLPB202133.200328
Citation: Rao Junfeng, Yang Shilong, Wang Yonggang, et al. Research on automatic control of solid state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 045003. doi: 10.11884/HPLPB202133.200328

固态Marx发生器的自动控制研究

doi: 10.11884/HPLPB202133.200328
基金项目: 国家重点研发计划项目(2019YFC0119100);国家自然科学基金青年基金项目(51707122);上海市青年科技英才扬帆计划(20YF1431100)
详细信息
    通讯作者:

    饶俊峰(1985—),男,博士,副教授,主要从事全固态高压脉冲发生器和低温等离子体应用等方面的研究工作;jfrao@usst.edu.cn

  • 中图分类号: TM832

Research on automatic control of solid state Marx generator

  • 摘要: 为了进一步推广固态Marx发生器的应用,实现输出脉冲波形的直观显示,提高电压调节精度,缩短充电调压时间,有必要对固态Marx发生器的自动控制进行研究。以现场可编译门阵列(FPGA)作为控制器,将输出电压、频率、脉宽、过电流阈值等参数以及故障检测及指示直接显示在液晶屏上,实现可视化设置和调节,在固态Marx发生器的输出端并联分压电路和高速数模转换电路,对输出的高压脉冲采样,一方面用于闭环PID控制实现分段式快速充电和输出电压精准化调节,另一方面用于在虚拟示波器中实时显示输出脉冲电压的基本波形。此外,在电路中加入了故障检测和保护机制,迅速检测电路中出现的过温、过电流等故障并对其及时停机响应以保护脉冲电源和操作人员安全。在20级的固态方波Marx发生器样机中产生的重复频率方波脉冲电压波形表明,该样机已经初步实现自动化控制,并能可靠运行。
  • 图  1  Marx发生器自动控制电路结构图

    Figure  1.  Automation structure diagram of Marx generator

    图  2  固态方波Marx发生器主电路原理图

    Figure  2.  Main circuit of solid-state rectangular Marx generator

    图  3  驱动电路结构图

    Figure  3.  Drive circuit diagram

    图  4  充电管和放电管的控制时序图

    Figure  4.  Time sequence of control signals for charging and discharging switches

    图  5  过温保护电路

    Figure  5.  Over-temperature protection circuit

    图  6  过温故障警示界面

    Figure  6.  Over-temperature indication

    图  7  过温时电信号的响应波形

    Figure  7.  Waveforms of electric signals under over-temperature condition

    图  8  阈值可调的过电流保护电路

    Figure  8.  Over current protection circuit with adjustable threshold

    图  9  过电流故障警示界面

    Figure  9.  Overcurrent indication

    图  10  分压采样电路

    Figure  10.  Voltage divider sampling circuit

    图  11  增量式PID控制流程框图

    Figure  11.  Flow chart of incremental PID control

    图  12  仿真用的分压电路图

    Figure  12.  Simulating circuit of the voltage divider

    图  13  分压电路仿真波形

    Figure  13.  Simulating waveform of the voltage divider circuit

    图  14  分段式PID调压输出电压波形

    Figure  14.  Generated voltage waveform with segmented PID control

    图  15  不同设定电压下的输出电压波形

    Figure  15.  Voltage waveforms at various setting voltage

    图  16  不同脉宽下输出电压波形

    Figure  16.  Voltage waveforms with different pulse widths

    图  17  1 kHz输出电压波形

    Figure  17.  Voltage waveform at 1 kHz

    图  18  3 kHz输出电压波形

    Figure  18.  Voltage waveform at 3 kHz

    图  19  示波器真实输出波形

    Figure  19.  Voltage waveform obtained from oscilloscope

    图  20  虚拟示波器输出波形—VGA

    Figure  20.  Voltage waveform shown in virtual oscilloscope—VGA

    图  21  虚拟示波器输出波形—LCD

    Figure  21.  Voltage waveform shown in virtual oscilloscope—LCD

  • [1] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [2] 饶俊峰, 姜松, 李孜. 基于Marx和磁开关的方波脉冲电源的研制[J]. 强激光与粒子束, 2016, 28:055005. (Rao Junfeng, Jiang Song, Li Zi. Rectangular pulse generator based on Marx and magnetic switch[J]. High Power Laser and Particle Beams, 2016, 28: 055005 doi: 10.11884/HPLPB201628.055005
    [3] Liu Kefu, Qiu Jian, Wu Yifan, et al. An all solid-state pulsed power generator based on Marx generator[C]//Proceedings of the 2007 16th IEEE International Pulsed Power Conference. 2007: 720-723.
    [4] Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [5] 江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22(3):561-564. (Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(3): 561-564 doi: 10.3788/HPLPB20102203.0561
    [6] Wei L S, Yuan D K, Zhang Y F, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104: 61-64. doi: 10.1016/j.vacuum.2014.01.009
    [7] Rao Junfeng, Lei Yang, Jiang Song, et al. All solid-state rectangular sub-microsecond pulse generator for water treatment application[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3359-3363. doi: 10.1109/TPS.2018.2829206
    [8] 姚陈果, 郭飞, 董守龙, 等. 纳秒脉冲处理A375细胞裸鼠皮下移植瘤的疗效评估[J]. 高电压技术, 2013, 39(1):117-121. (Yao Chenguo, Guo Fei, Dong Shoulong, et al. Treatment effect assessment of A375 cell subcutaneous transplantable tumor in nude mouse with nanosecond pulsed electric fields[J]. High Voltage Engineering, 2013, 39(1): 117-121 doi: 10.3969/j.issn.1003-6520.2013.01.017
    [9] Akiyama M, Shiraishi E, Sakugawa T, et al. Influence of 60 ns pulsed electric fields on embryonic stem cells[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1119-1123. doi: 10.1109/TDEI.2011.5976104
    [10] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6):1416-1425. (Lu Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425
    [11] Pereira F, Gomes L, Redondo L M. Multifunctional controller architecture for solid-state Marx modulator based on FPGA[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2991-2997. doi: 10.1109/TPS.2014.2320409
    [12] Pereira F, Gomes L, Redondo L. FPGA controller for power converters with integrated oscilloscope and graphical user interface[C]//Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives. 2011.
    [13] 饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001. (Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001
    [14] Li Zi, Liu Haotian, Jiang Song, et al. A novel drive circuit with overcurrent protection for solid state pulse generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 361-366. doi: 10.1109/TDEI.2018.007701
    [15] Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [16] 高景明, 刘永贵, 杨建华. 一种电容补偿型高压电容分压器的设计[J]. 高电压技术, 2007, 33(6):76-79. (Gao Jingming, Liu Yonggui, Yang Jianhua. Design of capacitance-compensated capacitive divider for high-voltage pulse measurement[J]. High Voltage Engineering, 2007, 33(6): 76-79 doi: 10.3969/j.issn.1003-6520.2007.06.019
    [17] Zong Wenzhi, Li Yue, Cheng Yangchun, et al. The design of a wide-band high-voltage divider[C]//Proceedings of the 2010 International Conference on Power System Technology. 2010: 1-5.
    [18] Chan Y F, Moallem M, Wang Wei. Design and implementation of modular FPGA-based PID controllers[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1898-1906. doi: 10.1109/TIE.2007.898283
    [19] Tzafestas S, Papanikolopoulos N P. Incremental fuzzy expert PID control[J]. IEEE Transactions on Industrial Electronics, 1990, 37(5): 365-371. doi: 10.1109/41.103431
  • 加载中
图(21)
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  282
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回