留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微透镜阵列光学相控阵扫描技术研究进展

杨旭 耿超 李小阳 李枫 姜佳丽 李斌成 李新阳

杨旭, 耿超, 李小阳, 等. 微透镜阵列光学相控阵扫描技术研究进展[J]. 强激光与粒子束, 2021, 33: 081005. doi: 10.11884/HPLPB202133.210075
引用本文: 杨旭, 耿超, 李小阳, 等. 微透镜阵列光学相控阵扫描技术研究进展[J]. 强激光与粒子束, 2021, 33: 081005. doi: 10.11884/HPLPB202133.210075
Yang Xu, Geng Chao, Li Xiaoyang, et al. Review of microlens array optical phased array beam scanning technique[J]. High Power Laser and Particle Beams, 2021, 33: 081005. doi: 10.11884/HPLPB202133.210075
Citation: Yang Xu, Geng Chao, Li Xiaoyang, et al. Review of microlens array optical phased array beam scanning technique[J]. High Power Laser and Particle Beams, 2021, 33: 081005. doi: 10.11884/HPLPB202133.210075

微透镜阵列光学相控阵扫描技术研究进展

doi: 10.11884/HPLPB202133.210075
基金项目: 国家自然科学基金项目(61675205);国家自然科学基金青年项目(62005286)
详细信息
    作者简介:

    杨旭:杨 旭(1990—),男,博士研究生,从事光场控制、自适应光学方面的研究

    通讯作者:

    李新阳(1971—),男,博士,研究员,博士生导师,从事自适应光学方面的研究

  • 中图分类号: TN820.2

Review of microlens array optical phased array beam scanning technique

  • 摘要:

    光学相控阵光束扫描技术在激光雷达、空间光通信和光开关等领域拥有巨大的应用潜力。微透镜阵列光学相控阵可以通过微透镜阵列间μm量级的相对位移同时对多个出射光束的二维倾斜相位进行调制,从而实现大角度二维光束扫描,具有出射口径大、结构简单、体积小、微惯性、多功能等优点。首先介绍了微透镜阵列光学相控阵的扫描原理,之后对微透镜阵列光学相控阵国内外的发展现状、应用和现阶段存在的问题进行了阐述,最后对微透镜阵列光学相控阵的发展趋势进行了展望。

  • 图  1  不同结构微透镜阵列光学相控阵扫描原理图

    Figure  1.  Schematic diagram of microlens array optical phased array with different structure

    图  2  微透镜阵列光学相控阵扫描原理示意图

    Figure  2.  Schematic diagram of the scanning principle of the microlens array optical phased array

    图  3  将微透镜阵列子孔径一半作为最大相对位移时,F#与最大扫描角度间的关系曲线

    Figure  3.  Curve of relationship between F# and the maximum scanning angle when half of the sub-aperture is used as the maximum relative displacement

    图  4  麻省理工学院林肯实验室利用二元光学技术制作的用于微透镜阵列扫描器的微透镜阵列

    Figure  4.  Microlens arrays for microlens array scanners made in the Lincoln Laboratory at MIT using binary optics

    图  5  美国空军实验研究室提出的优化开普勒结构微透镜阵列光学相控阵的扫描光斑

    Figure  5.  Scanning spot for modified microlens array optical phased array proposed by the U. S. Air Force Experimental Research Laboratory

    图  6  美国通用电气天文太空部提出的基于液晶光学相控阵和微透镜阵列光学相控阵的连续寻址扫描系统

    Figure  6.  A continuous addressable scanning system based on liquid crystal optical phased array and microlens array optical phased array proposed by General Electric Astronomy and Space Division, USA

    图  7  美国罗克韦尔科学中心制作的以压电堆作为驱动器的微透镜阵列光束扫描器

    Figure  7.  Schematic diagram of the scanning principle of the optical phased array of microlens array

    图  8  土耳其Koc大学提出的连续寻址微透镜阵列光学相控阵

    Figure  8.  Continuous addressable scanning microlens array optical phased array proposed by Koc University

    图  9  土耳其Koc大学以静电梳状驱动器作为驱动装置的微透镜阵列光学相控阵

    Figure  9.  Microlens array optical phased array with electrostatic comb driver as the driving device at Koc University

    图  10  华中科技大学制作的微透镜阵列光学相控阵原型装置

    Figure  10.  Prototype device of optical phased array with microlens array made by Huazhong University of Science and Technology

    图  11  天津大学设计的收发式一体微透镜阵列扫描器

    Figure  11.  The transceiver-type integrated microlens array scanner designed by Tianjin University

    图  12  中国科学院光电技术研究所进行的基于开普勒结构的微透镜阵列扫描器离散寻址扫描实验结果图

    Figure  12.  Experimental results of discrete addressable scanning of microlens array scanner based on Keplerian structure conducted by the Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS)

    图  13  中国科学院光电技术研究所提出将自适应光纤准直器作为预扫描装置的连续寻址扫描微透镜阵列光学相控阵技术

    Figure  13.  Optical phased array technique of continuous addressable scanning microlens array with adaptive fiber collimator as a pre-scanning device proposed by IOECAS

    图  14  基于多路复用器的大视场高分辨率成像技术原理图和多路复用器实物图

    Figure  14.  Schematic diagram of large field of view high-resolution imaging technology based on multiplexer and physical diagram of multiplexer

    图  15  基于微透镜阵列光学相控阵的收发式一体激光雷达测试系统。(a)激光雷达实验装置光路图;(b)相机拍摄的图片;(c)激光雷达测试系统拍摄距离图像

    Figure  15.  Transceiver integrated lidar test system based on microlens array optical phased array. (a) optical path diagram of the lidar experimental setup. (b) pictures taken by the camera. (c) distance images taken by the lidar test system

    图  16  基于微透镜阵列光学相控阵的光纤开关

    Figure  16.  Fiber optic switch based on microlens array optical phased array

    图  17  基于微透镜阵列光学相控阵的多视场投影显示器

    Figure  17.  Multiview projection display based on microlens array optical phased array

    图  18  利用微透镜阵列光学相控阵作为太阳跟踪器的太阳能系统

    Figure  18.  Solar energy system using micro lens array optical phased array as solar tracker

    表  1  微透镜阵列光学相控阵扫描技术的发展

    Table  1.   Development of microlens array optical phased array scanning technology

    timeagencywavelength/nmstructureFOV/(°)actuator (speed)modediameter/cm
    1989 MIT 632.8 Galileo 10 PZT(35 Hz) discrete 5
    1990 GE LC+Kepler continue
    1994 ROK 632 Galileo 9.5 PZT(300 Hz) discrete 0.6
    2001 IOE 632.8 Galileo 15 discrete
    2002 AFRL 1064 M-Kepler 36.8 discrete 1
    2006 Koc 632 Field lens+M-Kepler continue 0.06
    2007 HUST 650 Galileo 6.6 PZT(200 Hz) discrete 1.35
    2010 AFRL 552 M-Kepler(LC) 1 discrete
    2011 Koc Field lens+M-Kepler Comb(4 kHz) continue
    2018 TJU 1064 New M-Kepler 20 discrete
    2020 IOE 632 Kepler 10 discrete 3
    2021 IOE 632 AFOC+Kepler 10 continue 3
    下载: 导出CSV
  • [1] 徐龙道. 物理学词典[M]. 北京: 科学出版社, 2007.

    Xu Longdao. Dictionary of physics[M]. Beijing: Science Press, 2007
    [2] 马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与激光工程, 2020, 49:20201042. (Ma Yanxing, Wu Jian, Su Rongtao, et al. Review of optical phased array techniques[J]. Infrared and Laser Engineering, 2020, 49: 20201042
    [3] 束咸荣, 何炳发, 高铁. 相控阵雷达天线[M]. 北京: 国防工业出版社, 2007.

    Shu Xianrong, He Bingfa, Gao Tie. Phased array radar antennas[M]. Beijing: National Defense Industry Press, 2007
    [4] McManamon P F, Bos P J, Escuti M J, et al. A review of phased array steering for narrow-band electrooptical systems[J]. Proceedings of the IEEE, 2009, 97(6): 1078-1096. doi: 10.1109/JPROC.2009.2017218
    [5] Bridges W B, Brunner P T, Lazzara S P, et al. Coherent optical adaptive techniques[J]. Applied Optics, 1974, 13(2): 291-300. doi: 10.1364/AO.13.000291
    [6] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11): 2501-2504. doi: 10.1364/AO.9.002501
    [7] 胡婕, 杜升平, 郭弘扬. 基于液晶光学相控阵的光束扫描研究进展[J]. 激光与光电子学进展, 2019, 56:110002. (Hu Jie, Du Shengping, Guo Hongyang. Research progress on beam scanning based on liquid crystal optical phased array[J]. Laser & Optoelectronics Progress, 2019, 56: 110002
    [8] 金亚东, 闫爱民, 胡志娟, 等. 光波导阵列相控阵扫描技术研究进展[J]. 激光与光电子学进展, 2014, 51:080002. (Jin Yadong, Yan Aimin, Hu Zhijuan, et al. Research progress of optical waveguide phased array scanner[J]. Laser & Optoelectronics Progress, 2014, 51: 080002
    [9] Yoo B W, Megens M, Chan T, et al. Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering[J]. Optics Express, 2013, 21(10): 12238-12248. doi: 10.1364/OE.21.012238
    [10] McManamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology[J]. Proceedings of the IEEE, 1996, 84(2): 268-298. doi: 10.1109/5.482231
    [11] Goodman J W. Introduction to Fourier optics[M]. 2nd ed. New York: McGraw-Hill, 1996.
    [12] Reynolds G O, Develis J B, Parrent Jr G B, et al. The new physical optics notebook: tutorials in Fourier optics[M]. Bellingham, WA: SPIE Optical Engineering Press, 1989.
    [13] Goltsos W C, Holz M. Agile beam steering using binary optics microlens arrays[J]. Optical Engineering, 1990, 29(11): 1392-1397. doi: 10.1117/12.55743
    [14] Watson E A. Analysis of beam steering with decentered microlens arrays[J]. Optical Engineering, 1993, 32(11): 2665-2670. doi: 10.1117/12.148100
    [15] Watson E A, Whitaker W E, Brewer C D, et al. Implementing optical phased array beam steering with cascaded microlens arrays[C]//Proceedings, IEEE Aerospace Conference. IEEE, 2002: 1429-1436.
    [16] Shi Lei, Shi Jianru, McManamon P F, et al. Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light[J]. Applied Optics, 2010, 49(3): 409-421. doi: 10.1364/AO.49.000409
    [17] Flood K M, Cassarly W J, Sigg C, et al. Continuous wide-angle beam steering using translation of binary microlens arrays and a liquid-crystal phased array[C]//Proceedings of SPIE 1211, Computer and Optically Formed Holographic Optics. 1990: 296-304.
    [18] Motamedi M E, Andrews A P, Gunning III W J, et al. Miniaturized micro-optical scanners[J]. Optical Engineering, 1994, 33(11): 3616-3623. doi: 10.1117/12.181574
    [19] Akatay A, Ataman C, Urey H. High-resolution beam steering using microlens arrays[J]. Optics Letters, 2006, 31(19): 2861-2863. doi: 10.1364/OL.31.002861
    [20] Akatay A, Urey H. Design and optimization of microlens array based high resolution beam steering system[J]. Optics Express, 2007, 15(8): 4523-4529. doi: 10.1364/OE.15.004523
    [21] Gokce S K, Holmstrom S, Hibert C, et al. Two-dimensional MEMS stage integrated with microlens arrays for laser beam steering[J]. Journal of Microelectromechanical Systems, 2011, 20(1): 15-17. doi: 10.1109/JMEMS.2010.2090507
    [22] 周崇喜, 谢伟民, 董小春, 等. 非等焦距微透镜阵列对二维激光扫描优化设计研究[C]//第十一届全国电子束、离子束、光子束学术年会论文集. 中国电子学会, 2001: 178-181.

    Zhou Chongxi, Xie Weimin, Dong Xiaochun, et al. Optimal design of non-isofocal microlens arrays for two-dimensional laser scanning[C]//11th National Annual Conference on Electron Beam, Ion Beam and Photon Beam. Chinese Institute of Electronics, 2001: 178-181
    [23] 金国藩. 二元光学[M]. 北京: 国防工业出版社, 1998.

    Jin Guofan. Binary optics[M]. Beijing: National Defense Industry Press, 1998
    [24] 黄鹰, 向思桦, 陈四海, 等. 微型光扫描器研究[J]. 红外与毫米波学报, 2007, 26(1):26-29. (Huang Ying, Xiang Sihua, Chen Sihai, et al. Study on microoptical scanner[J]. Journal of Infrared and Millimeter Waves, 2007, 26(1): 26-29 doi: 10.3321/j.issn:1001-9014.2007.01.006
    [25] 董珊. 微透镜扫描器的研究[D]. 武汉: 华中科技大学, 2007.

    Dong Shan. Research on beam steering with microlens arrays[D]. Wuhan: Huazhong University of Science and Technology, 2007
    [26] 刘冉. 微光学扫描器研究[D]. 武汉: 华中科技大学, 2007.

    Liu Ran. Research on micro-optical scanner[D]. Wuhan: Huazhong University of Science and Technology, 2007
    [27] 谢洪波, 王瑶, 毛晨盛, 等. 一种可实现收发一体连续扫描的微透镜阵列[J]. 应用光学, 2018, 39(5):613-618. (Xie Hongbo, Wang Yao, Mao Chensheng, et al. Micro-lens array for integrative transmitting and receiving continuous scanning[J]. Journal of Applied Optics, 2018, 39(5): 613-618
    [28] Yang Xu, Geng Chao, Li Xiaoyang, et al. Theory analysis and experimental demonstration of a microlens array scanner with Kepler structure[J]. Applied Optics, 2020, 59(34): 10754-10760. doi: 10.1364/AO.402376
    [29] Yang Xu, Geng Chao, Li Feng, et al. High-resolution beam scanning technique with microlens array and adaptive fiber-optics collimator[J]. Optics Express, 2021, 29(1): 359-367. doi: 10.1364/OE.412272
    [30] Krogmann D, Tholl H D. Infrared micro-optics technologies[C]//Proceedings of SPIE 5406, Infrared Technology and Applications XXX. 2004: 121-132.
    [31] Bernard W J. Technology demonstrator for ground-based surveillance and missile warning[C]//Proceedings of SPIE 3436, Infrared Technology and Applications XXIV. 1998: 494-504.
    [32] 王瑶. 微透镜阵列在扫描光学系统中的应用研究[D]. 天津: 天津大学, 2018.

    Wang Yao. Application research of micro-lens array in scanning optical system[D]. Tianjin: Tianjin University, 2018
    [33] Rungenhagen M, Kunz M, Romasew E, et al. Monostatic Ladar demonstrator with micro-optical bidirectional beam control[C]//Proceedings of SPIE 7483, Technologies for Optical Countermeasures VI. 2009: 74830Q.
    [34] Duparré J, Götz B, Göring R. Micro-optical 1×4 fiber switch for multimode fibers with 600-μm core diameters[J]. Applied Optics, 2003, 42(34): 6889-6896. doi: 10.1364/AO.42.006889
    [35] Duparré J, Radtke D, Dannberg P. Implementation of field lens arrays in beam-deflecting microlens array telescopes[J]. Applied Optics, 2004, 43(25): 4854-4861. doi: 10.1364/AO.43.004854
    [36] Bogaert L, Meuret Y, Roelandt S, et al. Demonstration of a multiview projection display using decentered microlens arrays[J]. Optics Express, 2010, 18(25): 26092-26106. doi: 10.1364/OE.18.026092
    [37] Johnsen H J D, Aksnes A, Torgersen J. High-performance stationary solar tracking through multi-objective optimization of beam-steering lens arrays[J]. Optics Express, 2020, 28(14): 20503-20522. doi: 10.1364/OE.396477
    [38] McDearmon G F, Flood K M, Finlan J M. Comparison of conventional and microlens-array agile beam steerers[C]//Proceedings of SPIE 2383, Micro-Optics/Micromechanics and Laser Scanning and Shaping. 1995: 167-178.
    [39] Rabinovich W S, Goetz P G, Pruessner M, et al. Free space optical communication link using a silicon photonic optical phased array[C]//Proceedings of SPIE 9354, Free-Space Laser Communication and Atmospheric Propagation XXVII. 2015: 93540B.
    [40] Gibson J L, Duncan B D, Watson E A, et al. Wide-angle decentered lens beam steering for infrared countermeasures applications[J]. Optical Engineering, 2004, 43(10): 2312-2321. doi: 10.1117/1.1789137
    [41] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
    [42] Lin Renjie, Su V C, Wang Shuming, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi: 10.1038/s41565-018-0347-0
    [43] Shi Tan, Wang Yujie, Deng Zilan, et al. All-dielectric kissing-dimer metagratings for asymmetric high diffraction[J]. Advanced Optical Materials, 2019, 7: 1901389. doi: 10.1002/adom.201901389
    [44] Cao Guiyuan, Gan Xiaosong, Lin Han. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electronic Advances, 2018, 1: 180012.
    [45] Zhu Xufeng, Fang Wei, Lei Jian, et al. Supercritical lens array in a centimeter scale patterned with maskless UV lithography[J]. Optics Letters, 2020, 45(7): 1798-1801. doi: 10.1364/OL.389702
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  126
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-23
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回