留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高品质因数谐振腔的储能过程和泄能过程

王自成 张志强 高冬平 丁耀根 高怀林

王自成, 张志强, 高冬平, 等. 高品质因数谐振腔的储能过程和泄能过程[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.210132
引用本文: 王自成, 张志强, 高冬平, 等. 高品质因数谐振腔的储能过程和泄能过程[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.210132
Wang Zicheng, Zhang Zhiqiang, Gao Dongping, et al. Investigation on the storing and dumping processes of energy in high quality factor resonant cavity[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.210132
Citation: Wang Zicheng, Zhang Zhiqiang, Gao Dongping, et al. Investigation on the storing and dumping processes of energy in high quality factor resonant cavity[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.210132

高品质因数谐振腔的储能过程和泄能过程

doi: 10.11884/HPLPB202133.210132
基金项目: 国家自然科学基金项目(61172016)
详细信息
    作者简介:

    王自成(1966—),男,博士,研究员,从事短毫米波与太赫兹器件的研究

  • 中图分类号: TN015

Investigation on the storing and dumping processes of energy in high quality factor resonant cavity

  • 摘要: 为了计算高品质因数谐振腔的储能过程和泄能过程,将高品质因数谐振腔的输入膜片和输出结构分别建模为一个二端口网络和一个三端口网络,根据高品质因数谐振腔的信号流图,提出了一种基于递推的数值计算方法。用该方法设计了一个工作在2.92 GHz附近的基于BJ32波导的高品质因数谐振腔,给出了谐振腔的储能过程和泄能过程。当输入膜片开口宽度取20 mm、输出膜片开口宽度取60 mm时,计算得出的谐振频率为2.9198 GHz,饱和储能时间为2.6 μs,输出脉冲宽度6.82 ns,输出峰值增益为129.6,能量效率为0.169。
  • 图  1  谐振腔的示意图及S参数计算模型

    Figure  1.  Schematic of the resonant cavity and the model for calculating S-parameters

    图  2  谐振腔的S参数及z轴上电场计算结果

    Figure  2.  calculated results of S-parameters and electric field intensity at axis z

    图  3  谐振腔的信号流图

    Figure  3.  signal flow graphes in the resonant cavity

    图  4  经过2000步递推计算得出的输入端功率增益${G_{2}}{\rm{(200}}0)$

    Figure  4.  power gains ${G_{2}}{\rm{(200}}0)$ at the input port after 2000 iterations

    图  5  储能过程中输入端功率增益${G_{\rm{1}}}$,${G_{2}}$及输出端功率增益${G_{\rm{6}}}$

    Figure  5.  Power gains ${G_{\rm{1}}}$,${G_{2}}$ at the input port and power gains ${G_{\rm{6}}}$ at the output port in storing process

    图  6  泄能过程中输入端功率增益${G_{\rm{1}}}$及输出端功率增益${G_{\rm{6}}}$

    Figure  6.  Power gain ${G_{\rm{1}}}$ at the input port and power gain ${G_{\rm{6}}}$ at the output port in dumping process

    表  1  ${w_{\rm{1}}}$取不同值时谐振腔参数计算结果

    Table  1.   calculated parameters of the resonant cavity when ${w_{\rm{1}}}$ takes different values

    ${w_1}$/mm$\Delta \lambda $/mm${f_0}$/GHz$\left| {{S_{11}}} \right|$/dB$\left| {{S_{{2}1}}} \right|$/dB${P_ + }$/W${G_ + }$${Q_0}$${Q_{\rm{e}}}$
    201.082.9194−25.33−5.8626.853.61850152019
    221.082.9189−16.39−4.5823.146.21848831304
    251.082.9179−8.69−3.5215.130.21846013376
    下载: 导出CSV

    表  2  ${w_{2}}$取不同值时谐振腔参数计算结果

    Table  2.   calculated parameters of the resonant cavity when ${w_{2}}$ takes different values

    ${w_{2}}$/mm$\Delta \lambda $/mm${f_0}$/GHz$\left| {{S_{11}}} \right|$/dB$\left| {{S_{{2}1}}} \right|$/dB${P_ + }$/W${G_ + }$${Q_0}$${Q_{\rm{e}}}$
    601.082.9229−26.1−6.2528.757.41850258721
    661.082.9213−26.1−6.0127.5551850354612
    72.141.082.9194−25.33−5.8626.853.61850152019
    下载: 导出CSV

    表  3  输入膜片的S参数

    Table  3.   S-parameters of the input iris

    ${w_{\rm{1}}}$/mmSi11Si12
    20−0.9881+0.0748j0.0098+0.1290j
    22−0.9781+0.1180j0.0201+0.1663j
    25−0.9499+0.1964j0.0487+0.2355j
    下载: 导出CSV

    表  4  输出结构的S参数

    Table  4.   S-parameters of the output structure

    ${w_{2}}$/mmSo11So12So13So33
    60−0.2319−0.0767j0.7514−0.2568j0.47+0.2962j−0.1047+0.6096j
    66−0.2428−0.0301j0.7252−0.2794j0.5105+0.2729j−0.0158+0.5731j
    72.12−.2405+0.0165j0.7040−0.3105j0.5228+0.2556j0.0294+0.5481j
    下载: 导出CSV

    表  5  输出峰值增益

    Table  5.   Peak gain at the output port

    ${w_{2}}$/mm$\left| {{S_{{\rm{o}}13}}} \right|$${G_ + }$${G_{\rm{S}}}$${G_{6{\rm{p}}}}$$\eta $
    600.555557.470.86129.60.169
    660.55555567.9077.340.101
    72.120.555553.666.1777.950.102
    下载: 导出CSV
  • [1] 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2):2-7. (Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 2-7
    [2] 张颜颜, 陈宏, 鄢振麟, 等. 高功率微波反无人机技术[J]. 电子信息对抗技术, 2020, 35(4):39-43. (Zhang Yanyan, Chen Hong, Yan Zhenlin, et al. The technology of high power microwave anti-bee swarm drone[J]. Electronic Information Warfare Technology, 2020, 35(4): 39-43 doi: 10.3969/j.issn.1674-2230.2020.04.009
    [3] 杨丽娜, 曹泽阳, 韩耀锋. 高功率微波反无人机蜂群系统能力需求分析[J]. 军事运筹与系统工程, 2020, 34(2):26-32. (Yang Li’na, Cao Zeyang, Han Yaofeng. Analysis on the demand for the capability of high power microwave anti-bee swarm drone system[J]. Military Operations Research and Systems Engineering, 2020, 34(2): 26-32 doi: 10.3969/j.issn.1672-8211.2020.02.005
    [4] Chumerin P Y, Yushkov Y G. A shaper of gigawatt nanosecond microwave pulses with time domain compression of magnetron radiation energy[J]. Instruments and Experimental Techniques, 2000, 43(3): 363-365. doi: 10.1007/BF02759036
    [5] Manko A N, Slinko V N, Chumerin P Y, et al. A facility with resonant pulse compression for generating high-power Ku-band microwave pulses[J]. Instruments and Experimental Techniques, 2004, 47(3): 372-375. doi: 10.1023/B:INET.0000032906.57420.0e
    [6] Avgustinovich V A, Artemenko S N, Kaminskii V L, et al. A two-step system for compression of microwave pulses in series-coupled resonators[J]. Instruments and Experimental Techniques, 2007, 50(2): 233-236. doi: 10.1134/S002044120702011X
    [7] Avgustinovich V A, Artemenko S N, D’yachenko V F, et al. A study of the switching of the microwave compressor switch in a circular waveguide[J]. Instruments and Experimental Techniques, 2009, 52(4): 547-550. doi: 10.1134/S0020441209040137
    [8] Artemenko S N, Yushkov Y G. Compression of microwave pulses in a resonant system based on two waveguide T-joints[J]. Radioelectronics and Communications Systems, 2011, 54(5): 281-283. doi: 10.3103/S0735272711050086
    [9] Artemenko S N, Gorev S A, Igumnov V S, et al. Formation of long nanosecond rectangular pulses in the active RF pulse compression system with a compact resonant cavity[J]. Journal of Physics, 2016, 755: 011001.
    [10] Savaidis S P, Mitilineos S A, Ioannidis Z C, et al. Experiments on the pulse repetition frequency optimization of 1.3-GHz, 100-kW microwave pulse compressor[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2374-2381. doi: 10.1109/TMTT.2020.2978046
    [11] 宁辉, 方进勇, 李平, 等. 高功率微波脉冲压缩技术实验研究[J]. 强激光与粒子束, 2001, 13(4):471-474. (Ning Hui, Fang Jinyong, Li Ping, et al. Experimental research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(4): 471-474
    [12] 谢苏隆, 曹学军. X波段过模圆柱腔脉冲压缩技术理论研究[J]. 强激光与粒子束, 2006, 18(4):639-642. (Xie Shulong, Cao Xuejun. Theoretic research of X-band excessive modes cylindrical cavity pulse compression technology[J]. High Power Laser and Particle Beams, 2006, 18(4): 639-642
    [13] 方进勇, 黄惠军, 张治强, 等. 基于圆柱谐振腔的高功率微波脉冲压缩系统[J]. 物理学报, 2011, 60:048404. (Fang Jinyong, Huang Huijun, Zhang Zhiqiang, et al. High power microwave pulse compression system based on cylindrical resonant cavity[J]. Acta Physica Sinica, 2011, 60: 048404 doi: 10.7498/aps.60.048404
    [14] Jiang Tao, Yang Meng, Xiong Zhengfeng, et al. An X-band switched energy storage microwave pulse compression system[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4525-4529. doi: 10.1109/TPS.2019.2920739
    [15] 廖承恩. 微波技术基础[M]. 西安: 西安电子科技大学出版社, 1994.

    Liao Chengen. Basis of microwave technology[M]. Xiaan: Xidian University Press, 1994)
    [16] Altman J L. Microwave Circuits[M]. Canada: D. Van Nostrand Company LTD, 1964.
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  36
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-08-11
  • 网络出版日期:  2021-09-08

目录

    /

    返回文章
    返回