留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于吸聚一体的低散射传输型透镜设计

胡嫁琪 李震宇 王祖鑫 尚玉平 王思豪 廖成

胡嫁琪, 李震宇, 王祖鑫, 等. 基于吸聚一体的低散射传输型透镜设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.210169
引用本文: 胡嫁琪, 李震宇, 王祖鑫, 等. 基于吸聚一体的低散射传输型透镜设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.210169
Hu Jiaqi, Li Zhenyu, Wang Zuxin, et al. Design of a low-scattering transmissive lens based on integrationof absorption with focusing[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.210169
Citation: Hu Jiaqi, Li Zhenyu, Wang Zuxin, et al. Design of a low-scattering transmissive lens based on integrationof absorption with focusing[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.210169

基于吸聚一体的低散射传输型透镜设计

doi: 10.11884/HPLPB202133.210169
基金项目: 国家自然科学基金项目(61601379,61771407);中央高校基本科研业务费科技创新项目(2682018CX41)
详细信息
    作者简介:

    胡嫁琪(1999—),女,从事雷达散射截面调控研究

    通讯作者:

    尚玉平(1987—),男,博士,讲师,主要研究方向为电磁散射调控、共形天线阵列等

  • 中图分类号: O441.4

Design of a low-scattering transmissive lens based on integrationof absorption with focusing

  • 摘要: 通过传输型超表面透镜与电路模拟雷达波吸收器的集成设计,提出了一种兼具透射波前变换与带外雷达散射截面减缩特性的微波复合材料设计方法。透镜采用亚波长分布的周期性单元,由梯度相位补偿对透射波进行调节,进而获得平面波前与球面波前之间的互易变换。并且,使用透镜在波前变换频带以外低频端的反射特征,结合单个有耗层设计,构造了电路模拟吸波器。选用一副缝隙耦合馈电的微带贴片天线单元作为初级馈源天线,观察到复合材料的波前变换特性可在宽频带范围内产生主瓣增益增强效果。与透镜相比,电路模拟吸波器的引入使得复合材料针对TE与TM极化分别可在130.68%与155.11%的频率范围内获得雷达散射截面减缩效果。通过全波模拟和实验测量,验证了辐射增益增强与雷达散射截面减缩效果,表明了复合材料吸聚一体设计的有效性。
  • 图  1  复合阵列结构的层状剖面示意图

    Figure  1.  Schematic description of the layered composite array structure profile

    图  2  超表面透镜的透射相位分布

    Figure  2.  Transmission phase distribution of the metasurface lens

    图  3  超表面透镜的单元结构

    Figure  3.  Inclusion geometry of the metasurface lens

    图  4  透镜单元在正入射时的透射与反射仿真结果

    Figure  4.  Simulated transmission and reflection of the lens inclusion under normal incidence

    图  5  置于金属导电板上方的有耗层单元结构及其反射系数幅度仿真结果

    Figure  5.  Inclusion geometry of the lossy layer placed above a conducting plate and the simulated reflection magnitude

    图  6  本文所设计的超表面透镜与复合阵列结构

    Figure  6.  The proposed metasurface lens and composite array

    图  7  复合阵列结构在TE极化正入射时的透射电场幅度分布

    Figure  7.  Electric field amplitude distribution generated by the composite array under TE-polarized normal incidence

    图  8  金属导电平板、透镜、以及复合阵列结构在TE或TM极化正入射时的散射电场分布

    Figure  8.  Scattered electric field distribution of a conducting plate, the lens and the composite array under TE-polarized or TM-polarized normal incidence

    图  9  初级馈源天线及其与复合阵列结构的位置关系

    Figure  9.  Freestanding feeding antenna and its location under the composite array.

    图  10  初级馈源天线以及经覆盖后的初级馈源天线的辐射仿真结果

    Figure  10.  Simulated radiation results of the feeding antenna without or with the composite array cover

    图  11  在10 GHz处的二维辐射方向图

    Figure  11.  Two-dimensional radiation patterns at 10 GHz.

    图  12  经透镜或复合阵列结构所覆盖的初级馈源天线的雷达散射截面仿真结果

    Figure  12.  Simulated scattering cross-section of the feeding antenna covered with the lens or the composite array

    图  13  复合阵列结构及初级馈源天线样件照片

    Figure  13.  Photo of the fabricated antenna element covered with the composite array

    图  14  初级馈源天线样件在无或有复合阵列结构样件覆盖时的输入反射系数幅度仿真与实验结果

    Figure  14.  Simulated and measured reflection coefficient of the feeding antenna without or with the composite array cover

    图  15  初级馈源天线样件在无或有复合阵列结构样件覆盖时的主瓣增益仿真与实验结果

    Figure  15.  Simulated and measured boresight gain of the feeding antenna without or with the composite array cover

    图  16  在TE或TM极化正入射条件下初级馈源天线由透镜或复合阵列结构覆盖时的雷达散射截面仿真与实验结果

    Figure  16.  Simulated and measured scattering cross-section of the feeding antenna covered with the lens or the composite array for TE- or TM-polarized normal incidence

  • [1] Munk B A. Frequency selective surfaces: Theory and design[M]. John Wiley & Sons, 2000.
    [2] Chiu C N, Kuo C H, Lin M S. Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 895-904. doi: 10.1109/TEMC.2008.2004560
    [3] Wang Linbiao, See K Y, Zhang Junwu, et al. Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 700-705. doi: 10.1109/TEMC.2011.2159509
    [4] 王向峰, 高炳攀, 任志英, 等. 一体化曲面共形频率选择表面雷达罩[J]. 光学 精密工程, 2018, 26(6):1362-1369. (Wang Xiangfeng, Gao Binpan, Ren Zhiying, et al. Integrated curved-surface conformal frequency selective surface radome[J]. Optics and Precision Engineering, 2018, 26(6): 1362-1369 doi: 10.3788/OPE.20182606.1362
    [5] 李姣, 乔学增, 骆兴芳. 一种多频段可调复合单元频率选择表面的设计[J]. 电子测量技术, 2010, 33(12):24-28. (Li Jiao, Qiao Xuezeng, Luo Xingfang. Design of frequency selective surfaces with adjustable compounded unit cell and multi-band[J]. Electronic Measurement Technology, 2010, 33(12): 24-28 doi: 10.3969/j.issn.1002-7300.2010.12.007
    [6] 王珊珊, 高劲松, 梁凤超, 等. 多频段十字分形频率选择表面[J]. 物理学报, 2011, 60(5):154-158. (Wang Shanshan, Gao Jinsong, Liang Fengchao, et al. Multiband fractal cross dipole frequency selective surface[J]. Acta Physica Sinica, 2011, 60(5): 154-158
    [7] Yadav S, Jain C P, Sharma M M. Smartphone frequency shielding with penta-bandstop FSS for security and electromagnetic health applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 887-892. doi: 10.1109/TEMC.2018.2839707
    [8] Sampath S S, Sayi S, Sivasamy R, et al. A single-layer UWB frequency-selective surface with band-stop response[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(1): 276-279. doi: 10.1109/TEMC.2018.2886285
    [9] Yin Weiyang, Zhang Hou, Zhong Tao, et al. Ultra-miniaturized low-profile angularly-stable Frequency selective surface design[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4): 1234-1238. doi: 10.1109/TEMC.2018.2881161
    [10] Sampath S S, Sayi S, Kumar K. A novel miniaturized polarization independent band-stop frequency selective surface[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1678-1681. doi: 10.1109/TEMC.2018.2869664
    [11] 郑光明, 王雪纯, 汪岩. 小型化宽阻带多层宽带频率选择表面研究[J]. 华中科技大学学报: 自然科学版, 2020, 48(8):57-60. (Zheng Guangming, Wang Xuechun, Wang Yan. Study on miniaturized ultra wide stopband multilayer broadband frequency selective surface[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2020, 48(8): 57-60
    [12] Paiva S B, Neto V S, D’Assuncao A G. A new compact, stable, and dual-band active frequency selective surface with closely spaced resonances for wireless applications at 2.4 and 2.9 GHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 691-697. doi: 10.1109/TEMC.2019.2918568
    [13] Sivasamy R, Moorty B, Kanagasabai M, et al. A wideband frequency tunable FSS for electromagnetic shielding applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 280-283. doi: 10.1109/TEMC.2017.2702572
    [14] Ghosh S, Srivastava Broadband polarization-insensitive tunable frequency selective surface for wideband shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 166-172.
    [15] Zhang Liang, Yang Guohui, Wu Qun, et al. A novel active frequency selective surface with wideband tuning tange for EMC purpose[J]. Microbiol Immunol, 2012, 48(11): 4534-4537.
    [16] 薛凤至, 伍瑞新, 徐成, 等. 利用小型化频率选择表面实现宽带电磁透明[J]. 压电与声光, 2019, 41(4):465-468. (Xue Fengzhi, Wu Ruixin, Xu Cheng, et al. Using miniaturized frequency selective surface to realize broadband electromagnetic transparency[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 465-468 doi: 10.11977/j.issn.1004-2474.2019.04.001
    [17] Choi W H, Shin J H, Song T H, et al. Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(3): 599-607. doi: 10.1109/TEMC.2013.2290057
    [18] He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
    [19] Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 2020, 17(7): 143723-143733.
    [20] Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029. doi: 10.1109/TAP.2013.2280836
    [21] Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
    [22] Baskey H B, Johari E, Akhtar M J. Metamaterial structure integrated with a dielectric absorber for wideband reduction of antennas radar cross section[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1060-1069. doi: 10.1109/TEMC.2016.2639060
    [23] Bilotti F, Toscano A, Alici K B, et al. Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 63-72. doi: 10.1109/TEMC.2010.2051229
    [24] 段坤, 唐守柱. 一种宽通带低插损的吸透一体频率选择表面[J]. 现代雷达, 2020, 42(4):72-76. (Dang Kun, Tang Shouzhu. A wide passband and low insertion loss frequency-selective resorber[J]. Modern Radar, 2020, 42(4): 72-76
    [25] 赵宇婷, 李迎松, 杨国辉. 基于电路模拟吸收体的宽带吸波型频率选择表面设计[J]. 物理学报, 2020, 69(19):321-327. (Zhao Yuting, Li Yingsong, Yang Guohui. A novel wideband absorptive frequency selective surface based on circuit analog absorber[J]. Acta Physica Sinic, 2020, 69(19): 321-327
    [26] 强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31(10):131-136. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. A wide passband and low insertion loss frequency-selective resorber[J]. High Power Laser and Particle Beams, 2019, 31(10): 131-136
    [27] Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. Frequency-selective rasorber based on square-loop and cross-dipole arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5581-5589. doi: 10.1109/TAP.2014.2357427
    [28] Pang Yongqiang, Li Yongfei, Qu Bingyue, et al. Wideband RCS reduction metasurface with a transmission window[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(10): 7079-7087. doi: 10.1109/TAP.2020.2995429
    [29] Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1192-1197. doi: 10.1109/TAP.2019.2940495
    [30] Shang Yuping, Xiao Shaoqiu, Tang Mingchun, et al. Radar cross-section reduction for a microstrip patch antenna using PIN diodes[J]. IET Microwaves Antennas and Propagation, 2012, 6(6): 670-679. doi: 10.1049/iet-map.2011.0460
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  33
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-09-04

目录

    /

    返回文章
    返回