留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面与卫星太赫兹通信高频大气窗口分析

曹相春 郝建红 赵强 张芳 范杰清 董志伟

曹相春, 郝建红, 赵强, 等. 地面与卫星太赫兹通信高频大气窗口分析[J]. 强激光与粒子束, 2021, 33: 093003. doi: 10.11884/HPLPB202133.210186
引用本文: 曹相春, 郝建红, 赵强, 等. 地面与卫星太赫兹通信高频大气窗口分析[J]. 强激光与粒子束, 2021, 33: 093003. doi: 10.11884/HPLPB202133.210186
Cao Xiangchun, Hao Jianhong, Zhao Qiang, et al. Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite[J]. High Power Laser and Particle Beams, 2021, 33: 093003. doi: 10.11884/HPLPB202133.210186
Citation: Cao Xiangchun, Hao Jianhong, Zhao Qiang, et al. Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite[J]. High Power Laser and Particle Beams, 2021, 33: 093003. doi: 10.11884/HPLPB202133.210186

地面与卫星太赫兹通信高频大气窗口分析

doi: 10.11884/HPLPB202133.210186
基金项目: 国家自然科学基金联合项目(U1730247);高功率微波技术重点实验室项目(6142605200301)
详细信息
    作者简介:

    曹相春,cxcxiaocao@163.com

    通讯作者:

    赵 强,zhaoq@iapcm.ac.cn

  • 中图分类号: O441.4

Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite

  • 摘要: 较大的传输路径损耗限制了太赫兹无线通信在大气中的传输距离,要想实现地面与卫星之间太赫兹波的长程传输,必须先找到低衰减的大气透明窗口。本文结合我国大气分布特点,通过大气辐射传输模型工具am(atmospheric model)对大气吸收衰减建模进行分析,从中选定适合我国地面与卫星太赫兹通信的理想地基站点;利用真实大气数据和分层传输理论,计算了地面与卫星之间太赫兹通信的总路径损耗,结合信号发射功率、天线增益、信噪比、噪声功率值和相应的路径衰减阈值,给出了天线增益分别为0~100 dBi时10~15 THz频段内的总可用带宽和大气窗口;通过将高海拔平台作为地面与卫星之间太赫兹通信的中继链路,给出了1~15 THz频段内的可用大气窗口,为我国地面与卫星通信链路的建立、地基站点和通信频段的选取提供了理论和数值参考。
  • 图  1  太赫兹(0.2~1.8 THz)大气传输透射率

    Figure  1.  Atmospheric transmittance at 0.2 to 1.8 THz

    图  2  太赫兹(1~3 THz)大气传输透射率

    Figure  2.  Atmospheric transmittance at 1 to 3 THz

    图  3  太赫兹波沿水平方向传输时的大气吸收衰减,(b)是(a)的局部图

    Figure  3.  Terahertz atmospheric absorption attenuation propagating along horizontal direction, where (b) is a local graph of (a)

    图  4  地基站点与卫星(G-S)、高海拔平台与卫星(HAP-S)、地基站点与高海拔平台(G-HAP)之间太赫兹通信总路径损耗,(b)是(a)的局部图

    Figure  4.  Total path loss of terahertz communication corresponding to Ground-based site-to-Satellite (G-S), High Altitude Platform-to-Satellite (HAP-S) and Ground-based site-to-High Altitude Platform (G-HAP), where (b) is a local graph of (a)

    表  1  两个站点经纬度、海拔、气压、温度、相对湿度数据

    Table  1.   Longitude and latitude, altitude, air pressure, temperature and relative humidity data of two sites

    sitelongitude/(°)latitude/(°)altitude/mp/hPaT/KRH/%
    Ali80.02632.3265060.0544.4259.437
    Wuzhishan109.5218.77327.2979.5292.281
    注:数据来源于MERRA-2中2007-2016年1,2,12月平均数据和中国气象数据网2019年1,2,12月平均数据。
    下载: 导出CSV

    表  2  3种通信场景下的可用带宽统计

    Table  2.   Usable bandwidth statistics in three communication cases

    casetotal antenna gains/dBiusable bandwidth/THz
    total0.2~1 THz1~10 THz10~15 THz
    ground-based site
    to orbiting satellite
    (G-S)
    00000
    200000
    400000
    600.057 20.057 200
    800.323 70.323 700
    1002.957 850.587 5502.370 3
    high altitude platform
    to orbiting satellite
    (HAP-S)
    00000
    200000
    400000
    600.014 750.014 7500
    801.837 30.795 81.041 50
    10014.617 10.798 18.836 34.9827
    Ground-based site
    to high altitude platform
    (G-HAP)
    00000
    200000
    400000
    600.250 950.250 9500
    801.388 10.566 2500.821 85
    1004.353 350.633 350.2963.424
    下载: 导出CSV
  • [1] Xia Qing, Hossain Z, Medley M, et al. A link-layer synchronization and medium access control protocol for terahertz-band communication networks[C]//2015 IEEE Global Communications Conference. 2015: 1-7.
    [2] 王玉文. 太赫兹辐射大气传输特性研究与信道分析[D]. 绵阳: 中国工程物理研究院, 2017.

    Wang Yuwen. Atmospheric propagation characteristics and capacity analysis of terahertz wave[D]. Mianyang: China Academy of Engineering Physics, 2017).
    [3] Akyildiz I F, Jornet J M, Han Chong. Terahertz band: next frontier for wireless communications[J]. Physical Communication, 2014, 12: 16-32. doi: 10.1016/j.phycom.2014.01.006
    [4] Shi Shengcai, Paine S, Yao Qijun, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica[J]. Nature Astronomy, 2017, 1: 0001. doi: 10.1038/s41550-016-0001
    [5] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69. doi: 10.1016/j.jqsrt.2017.06.038
    [6] Paine S. The am atmospheric model[R]. Smithsonian Astrophysical Observatory, 2012.
    [7] Molod A, Takacs L, Suarez M, et al. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2[J]. Geoscientific Model Development, 2015, 8(5): 1339-1356. doi: 10.5194/gmd-8-1339-2015
    [8] Jornet J M, Akyildiz I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211-3221. doi: 10.1109/TWC.2011.081011.100545
    [9] Yang Yihong, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264-273. doi: 10.1109/TTHZ.2011.2159554
    [10] Wohnsiedler S, Theuer M, Herrmann M, et al. Simulation and experiment of terahertz stand-off detection[C]//Proceedings of SPIE 7215, Terahertz Technology and Applications II. 2009: 101-108.
    [11] Saeed A, Gurbuz O, Akkas M A. Terahertz communications at various atmospheric altitudes[J]. Physical Communication, 2020, 41: 101113. doi: 10.1016/j.phycom.2020.101113
    [12] Schneider T, Wiatrek A, Preussler S, et al. Link budget analysis for terahertz fixed wireless links[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 250-256. doi: 10.1109/TTHZ.2011.2182118
    [13] Han Chong, Bicen A O, Akyildiz I F. Multi-wideband waveform design for distance-adaptive wireless communications in the terahertz band[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 910-922.
    [14] Hwu S U, deSilva K B, Jih C T. Terahertz (THz) wireless systems for space applications[C]//2013 IEEE Sensors Applications Symposium Proceedings. 2013: 171-175.
    [15] ITU-R S. 1590 FRENCH-2002, Technical and operational characteristics of satellites operating in the range 20-375 THz[S].
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1241
  • HTML全文浏览量:  389
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-23
  • 修回日期:  2021-07-02
  • 网络出版日期:  2021-07-20
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回