留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏高稳定的碘化铯阴极密封式分幅变像管研制

杨阳 朱炳利 缑永胜 陈震 白晓红 秦君军 白永林 刘百玉 徐鹏 王博 曹伟伟

杨阳, 朱炳利, 缑永胜, 等. 高灵敏高稳定的碘化铯阴极密封式分幅变像管研制[J]. 强激光与粒子束, 2021, 33: 092001. doi: 10.11884/HPLPB202133.210192
引用本文: 杨阳, 朱炳利, 缑永胜, 等. 高灵敏高稳定的碘化铯阴极密封式分幅变像管研制[J]. 强激光与粒子束, 2021, 33: 092001. doi: 10.11884/HPLPB202133.210192
Yang Yang, Zhu Bingli, Gou Yongsheng, et al. Sealed X-ray framing tube with CsI photocathode to achieve high detection efficiency and stability[J]. High Power Laser and Particle Beams, 2021, 33: 092001. doi: 10.11884/HPLPB202133.210192
Citation: Yang Yang, Zhu Bingli, Gou Yongsheng, et al. Sealed X-ray framing tube with CsI photocathode to achieve high detection efficiency and stability[J]. High Power Laser and Particle Beams, 2021, 33: 092001. doi: 10.11884/HPLPB202133.210192

高灵敏高稳定的碘化铯阴极密封式分幅变像管研制

doi: 10.11884/HPLPB202133.210192
基金项目: 国家自然科学基金项目(11803074);中国科学院西部青年学者项目(XAB2016B25)
详细信息
    作者简介:

    杨 阳,yangyang@opt.cn

  • 中图分类号: TB872;TN143

Sealed X-ray framing tube with CsI photocathode to achieve high detection efficiency and stability

  • 摘要: 为解决采用Au光电阴极、开放式结构的分幅变像管探测效率低、稳定性差的问题,研制了一种采用CsI光电阴极的密封式分幅变像管。为了对比不同光电阴极对X射线的响应强度,密封式分幅变像管制作有一条Au微带阴极和一条CsI微带阴极。完成了密封式分幅变像管的结构设计、工艺制作和实验测试。研究结果表明:当加载半高宽度200 ps、幅值−2.7 kV的选通脉冲时测得其时间分辨为65 ps;在非单色高能X射线源照射下,CsI阴极的静态响应强度是Au阴极的3.4倍;大气环境中存储1000 h后密封式分幅变像管的静态响应强度仅降低到完成制作时的83%。上述结果表明采用CsI阴极的密封式分幅变像管具有更高的探测效率和稳定性,可有效提升X射线分幅成像质量和可靠性。
  • 图  1  不同厚度的铍窗对X射线透过率与X射线光子能量的关系曲线

    Figure  1.  Transmittance of Be window with different thickness as a function of X-ray photon energy

    图  2  反射式CsI阴极归一化量子效率随阴极厚度的变化关系

    Figure  2.  Normalized yield of reflection mode CsI photocathode as a function of cathode thickness

    图  3  密封式分幅变像管结构示意图

    Figure  3.  Schematic structure of the sealed X-ray framing tube

    图  4  密封式分幅变像管工艺制作流程图

    Figure  4.  Flow chart of sealed X-ray framing tube fabrication

    图  5  完成研制的密封式分幅变像管(a)和皮秒分幅相机电控系统(b)

    Figure  5.  Sealed X-ray framing tube (a) and electric control system (b)

    图  6  时间分辨测试装置示意图

    Figure  6.  Temporal resolution measurement setup

    图  7  分幅变像管时间分辨测试结果,其曝光时间为65 ps

    Figure  7.  Measured temporal resolution of X-ray framing tube, the measured exposure time is 65 ps

    图  8  密封式分幅变像管静态响应测试装置图

    Figure  8.  Experimental setup of static response test

    图  9  密封式分幅变像管静态响应测试结果

    Figure  9.  Static response image of sealed X-ray framing tube

    图  10  (a)CsI阴极密封式分幅变像管静态响应强度随存储时间的变化关系和(b)Au阴极开放式分幅变像管静态响应强度随累计大气暴露时间的变化关系

    Figure  10.  (a) Normalized intensity of sealed X-ray framing tube with CsI photocathode as a function of storage time and (b) normalized intensity of open-structured X-ray framing tube with Au photocathode as a function of accumulated air exposure time

  • [1] Bradley D K, Bell P M, Kilkenny J D, et al. High-speed gated X-ray imaging for ICF target experiments[J]. Review of Scientific Instruments, 1992, 63(10): 4813-4817. doi: 10.1063/1.1143571
    [2] Chang Zenghu, Shan Bing, Liu Xiuqin, et al. Gated MCP framing camera with 60-ps exposure time[C]//Proceedings of SPIE 2549, Ultrahigh-and High-Speed Photography, Videography, and Photonics'95. 1995: 53-59.
    [3] Yang Wenzheng, Bai Yonglin, Liu Baiyu, et al. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(2): 291-296.
    [4] Oertel J A, Aragonez R, Archuleta T, et al. Gated X-ray detector for the National Ignition Facility[J]. Review of Scientific Instruments, 2006, 77: 10E308. doi: 10.1063/1.2227439
    [5] 曹柱荣, 王强强, 邓博, 等. 激光聚变极端环境下X光高速摄影技术研究进展[J]. 强激光与粒子束, 2020, 32(11):112004. (Cao Zhurong, Wang Qiangqiang, Deng Bo, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004
    [6] 王峰, 张兴, 理玉龙, 等. 激光惯性约束聚变研究中高时空诊断技术研究进展[J]. 强激光与粒子束, 2020, 32(11):112002. (Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002
    [7] Pawley C J, Deniz A V. Improved measurements of noise and resolution of X-ray framing cameras at 1−2 keV[J]. Review of Scientific Instruments, 2000, 71(3): 1286-1295. doi: 10.1063/1.1150497
    [8] Henke B L, Liesegang J, Smith S D. Soft-X-ray-induced secondary-electron emission from semiconductors and insulators: Models and measurements[J]. Physical Review B, 1979, 19(6): 3004-3021. doi: 10.1103/PhysRevB.19.3004
    [9] 黎宇坤, 陈韬, 李晋, 等. CsI光阴极在10—100 keV X射线能区的响应灵敏度计算[J]. 物理学报, 2018, 67:085203. (Li Yukun, Chen Tao, Li Jin, et al. Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region[J]. Acta Physica Sinica, 2018, 67: 085203 doi: 10.7498/aps.67.20180029
    [10] Xie Yuguang, Zhang Aiwu, Liu Yingbiao, et al. Influence of air exposure on CsI photocathodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 689: 79-86.
    [11] Chollet M, Ahr B, Walko D A, et al. Hard X-ray streak camera at the advanced photon source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649(1): 70-72.
    [12] Opachich Y P, Kalantar D H, MacPhee A G, et al. High performance imaging streak camera for the National Ignition Facility[J]. Review of Scientific Instruments, 2012, 83: 125105. doi: 10.1063/1.4769753
    [13] Henke B L, Knauer J P, Premaratne K. The characterization of X-ray photocathodes in the 0.1−10-keV photon energy region[J]. Journal of Applied Physics, 1981, 52(3): 1509-1520. doi: 10.1063/1.329789
    [14] Boone J M, Seibert J A. An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV[J]. Medical Physics, 1997, 24(11): 1661-1670. doi: 10.1118/1.597953
    [15] Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 2011, 18: 056309. doi: 10.1063/1.3567499
    [16] Nagel S R, Trosseille C A, MacPhee A, et al. Evaluation of X-ray transmission photocathode detection issues in the energy range of 8-30 keV[C]//Proceedings of SPIE 11114, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI. 2019: 1111416.
    [17] Li Yaran, Mu Baozhong, Xie Qing, et al. Development of an X-ray eight-image Kirkpatrick–Baez diagnostic system for China’s laser fusion facility[J]. Applied Optics, 2017, 56(12): 3311-3318. doi: 10.1364/AO.56.003311
  • 加载中
图(10)
计量
  • 文章访问数:  862
  • HTML全文浏览量:  314
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-08-05
  • 网络出版日期:  2021-08-12
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回