留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极化转换超表面的宽带低雷达散射截面缝隙天线阵

潘晨清 周东方 刘起坤 张毅 吕大龙 张德伟

潘晨清, 周东方, 刘起坤, 等. 基于极化转换超表面的宽带低雷达散射截面缝隙天线阵[J]. 强激光与粒子束, 2021, 33: 103001. doi: 10.11884/HPLPB202133.210197
引用本文: 潘晨清, 周东方, 刘起坤, 等. 基于极化转换超表面的宽带低雷达散射截面缝隙天线阵[J]. 强激光与粒子束, 2021, 33: 103001. doi: 10.11884/HPLPB202133.210197
Pan Chenqing, Zhou Dongfang, Liu Qikun, et al. Slot antenna array with broadband low radar cross section using polarization conversion metasurface[J]. High Power Laser and Particle Beams, 2021, 33: 103001. doi: 10.11884/HPLPB202133.210197
Citation: Pan Chenqing, Zhou Dongfang, Liu Qikun, et al. Slot antenna array with broadband low radar cross section using polarization conversion metasurface[J]. High Power Laser and Particle Beams, 2021, 33: 103001. doi: 10.11884/HPLPB202133.210197

基于极化转换超表面的宽带低雷达散射截面缝隙天线阵

doi: 10.11884/HPLPB202133.210197
基金项目: 核高基重大专项(2013ZX01010003-004)
详细信息
    作者简介:

    潘晨清,chenqing_pan@qq.com

  • 中图分类号: TN715

Slot antenna array with broadband low radar cross section using polarization conversion metasurface

  • 摘要: 提出了一种利用极化转换超表面(PCM)来缩减雷达散射截面(RCS)并保持缝隙天线阵列辐射特性的新型天线,在不影响天线性能的情况下实现了天线的宽带RCS缩减。该PCM由45°倾斜的开槽矩形贴片周期排布构成,它被放置在缝隙阵列天线的上表面,起到RCS缩减的功能。分析了RCS缩减的特点和原理,仿真和实验结果表明,带有PCM的缝隙天线阵在x极化和y极化波冲击下,单站RCS缩减带宽为8.0~21.8 GHz。同时天线的辐射特性在阻抗带宽、增益和辐射模式等方面都能保持良好性能。
  • 图  1  极化转换单元结构示意图

    Figure  1.  Geometry of the polarization conversion unit cell

    图  2  不同参数对反射系数rxx 的影响

    Figure  2.  Simulated magnitude of rxx for different parameter

    图  3  x极化照射下的单元的反射特性

    Figure  3.  Reflection characteristics of the unit under x-polarized illumination

    图  4  电磁波极化转换原理示意图

    Figure  4.  Schematic diagram of electromagnetic wave polarization conversion principle

    图  5  无限周期结构开槽矩形贴片及其镜像结构交叉极化反射波的相位差

    Figure  5.  Cross-polarized reflection phase difference between the infinite periodic slotted rectangular patch unit and the mirror unit

    图  6  极化转换超表面结构示意图

    Figure  6.  Schematic diagram of polarization conversion metasurface structure

    图  7  x极化波垂直照射下超表面和金属板的归一化单站RCS

    Figure  7.  Normalized single station RCS of metasurfaces and metal plate under vertical irradiation of x polarized wave

    图  8  极化超表面和金属板的3-D散射图

    Figure  8.  3-D bistatic scattered fields of the PCM and the PEC

    图  9  天线结构示意图

    Figure  9.  Schematic diagram of slot antenna structure

    图  10  一分二功分器结构示意图

    Figure  10.  Schematic diagram of the 1-to-2 power divider

    图  11  缝隙天线阵实物照片

    Figure  11.  Photoes of slot antenna array

    图  12  有无PCM缝隙天线阵反射系数的测量和仿真结果

    Figure  12.  Simulated and measured reflection coefficients of the antenna without PCM and the antenna with PCM

    图  13  有无PCM缝隙天线阵10.4 GHz方向图

    Figure  13.  Radiation patterns with or without PCM slot antenna array at 10.4 GHz

    图  14  缝隙天线阵的RCS仿真和测试曲线

    Figure  14.  Simulated and measured RCS of both antennas versus frequency

    表  1  低RCS缝隙天线阵性能比较

    Table  1.   Performance comparison of low RCS slot antenna array

    Ref.impedance bandwidth/GHzRCS bandwidth/GHzmaximum gain/dB
    this paper
    ref. [7]
    ref. [16]
    9.12~11.49
    4.45~4.75
    3.01~3.48
    8.0~21.8
    6.0~18.0
    6.3~14.5
    9.8
    8.91
    5.56
    ref.[17]9.25~10.116.6~13.612.1
    下载: 导出CSV
  • [1] Reuster D D, Thiele G A, Eloe P W. Development of low RCS reflector antenna systems[C]//Proc IEEE Antennas Propag Symp. 1994, 3: 2325–2328.
    [2] Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties[J]. IEEE Trans Antennas Propag, 2012, 3(60): 2740-2747.
    [3] Li Youquan, Zhang Hui, Fu Yunqi, et al. RCS reduction of ridged wave-guide slot antenna array using EBG radar absorbing material[J]. IEEE Antennas Wireless Propag Lett, 2008, 7(60): 473-476.
    [4] Liu Tao, Cao Xiangyu, GaoJun, et al. RCS reduction of waveguide slot antenna with metamaterial absorber[J]. IEEE Trans Antennas Propag, 2013, 3(61): 1479-1484.
    [5] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399
    [6] Chen Hongya, Wang Jiafu, Ma H, et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. Journal of Applied Physics, 2014, 4: 154504.
    [7] Liu Ying, Li Kun, Jia Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 1(64): 326-331.
    [8] Zheng Qi, Chen Jiangguo, Ding Jun, et al. A broadband low-RCS metasurface for CP patch antennas[J]. IEEE Transactions on Antennas and Propagation, 2021, 6(69): 3529-3534.
    [9] Li Kun, Liu Ying, Jia Yongtao, et al. A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 8(65): 4288-4292.
    [10] Yang Lingjun, Sun Sheng, Sha W E I. Ultrawideband reflection-type metasurface for generating integer and fractional orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2020, 2(68): 2166-2175.
    [11] Edalati A, Sarabandi K. Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces[J]. IEEE Trans Antennas Propag, 2014, 2(62): 747-754.
    [12] Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties[J]. IEEE Trans Antennas Propag, 2012, 6(60): 2740-2747.
    [13] 康行健. 天线原理与设计[M]. 北京: 北京理工大学出版社, 1993: 327-328.

    Kang Xingjian. The theory and design of antenna[M]. Beijing: Beijing Institute of Technology Press, 1993: 327-328
    [14] Hussain R, Alreshaid A T, Podilchak S K, et al. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets[J]. IET Microwaves, Antennas & Propagation, 2017, 11(12): 271-279.
    [15] Hong Wei, Jiang Zhihao, Yu Chao, et al. Multibeam antenna technologies for 5G wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6231-6249. doi: 10.1109/TAP.2017.2712819
    [16] Xue Yu, Li Changyuan. Low RCS symmetric dipole antenna design based on polarization conversion metasurface[J]. Modern Navigation, 2019, 10(1):39-44.
    [17] 张建. 基于极化转换超表面的低RCS缝隙天线阵设计[D]. 大连: 大连海事大学, 2020.

    Zhang Jian. Low RCS slot antenna array design based on polarization conversion metasurface[D]. Dalian Maritime University, 2020
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  994
  • HTML全文浏览量:  500
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-08-13
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回