Effect of antireflection film on performance of monocrystalline silicon solar cell
-
摘要: 在太阳能电池效率的评价中,电池材料、掺杂浓度、扩散长度等都是比较重要的参数,合理地改变相关参数可以优化太阳能电池的性能,提高电池效率。此外,在太阳能电池表面镀一层具有减反作用的光学薄膜(简称减反膜)也是提高电池效率的重要手段。以提高电池效率为目标,对单晶硅太阳能电池的掺杂浓度和扩散长度等微观参数进行计算优化,分析了掺杂浓度和扩散长度变化对电池效率的影响。并在此基础上分析了不同类型的减反膜对于电池效率的影响,给出了最佳减反膜材料及其膜系厚度,并且结合镀膜后电池量子效率的变化验证了其准确性。结果表明,在优化电池掺杂浓度和扩散长度的基础上,选择合适的减反膜,电池效率最高可达20.35%,相比于优化前提高了8.25%。Abstract: In the evaluation of solar cell efficiency, the cell material, doping concentration, diffusion length and so on are important parameters. Reasonable change of relevant parameters can optimize the performance of solar cells and improve their efficiency. In addition, there is an important means to improve the efficiency of solar cells by coating a layer of antireflection optical film on the surface of solar cells. To improve the cell efficiency, the micro parameters such as doping concentration and diffusion length of monocrystalline silicon solar cells were calculated and optimized, and the changes of cell efficiency with doping concentration and diffusion length were analyzed. On this basis, the influence of different antireflection films on the efficiency of the battery is analyzed, and the influence of antireflection film thickness on the efficiency of the battery is given. The results show that after optimizing the doping concentration and diffusion length of the cell, and selecting suitable antireflection films, the cell efficiency can reach 20.35%, which is 8.25% higher than that without optimization.
-
表 1 无减反膜电池建模
Table 1. Simulation without antireflection film
parameter battery
area/cm2battery
thickness/μmbase doping
concentration/cm−3emitter doping
concentration/cm−3diffusion
length/μmbefore optimization 10×10 300 5×1016 1×1019 130.5 after optimization 10×10 300 1×1017 1×1018 200.3 表 2 本文建模结果与文献[4]结果比对
Table 2. The modeling results in this paper are compared with those in Ref. [4]
Isc/A Uoc/V Pm/W FF η/% Ref. [4] modeling results 2.28 0.56 1.21 0.835 12.10 modeling results before optimization 2.275 0.6367 1.211 0.836 12.11 modeling results after optimization 2.42 0.6744 1.375 0.842 13.75 表 3 减反膜材料的折射率
Table 3. Refractive index of antireflection film materials
antireflection film material refractive index SiNx 2.2 SiNx:H 2 SiO2 1.52 Ta2O5 2.1~2.26 TiO2 2.39~2.47 表 4 不同减反膜情况下太阳能电池参数
Table 4. Parameters of solar cells with different antireflection coatings
antireflection film material Uoc/V Isc/A Pm/W η/% FF SiNx 0.683 592 3.435 18 1.981 84 19.82 0.843 960 498 SiNx:H 0.683 858 3.464 76 1.999 6 20.00 0.843 925 363 SiO2 0.682 175 3.277 72 1.887 41 18.87 0.844 109 137 Ta2O5 0.683 636 3.440 05 1.984 77 19.85 0.843 957 365 TiO2 0.682 855 3.353 34 1.932 75 19.33 0.844 052 769 -
[1] 臧子豪, 李晗升, 姜显园, 等. 锡钙钛矿太阳能电池的进展与展望[J]. 物理化学学报, 2021, 37(4):14-25. (Zang Zihao, Li Hansheng, Jiang Xianyuan, et al. Progress and perspective of tin perovskite solar cells[J]. Acta Physico-Chimica Sinica, 2021, 37(4): 14-25 [2] 李腾飞, 占肖卫. 有机光伏研究进展[J]. 化学学报, 2021, 79(3):257-283. (Li Tengfei, Zhan Xiaowei. Advances in organic photovoltaics[J]. Acta Chimica Sinica, 2021, 79(3): 257-283 doi: 10.6023/A20110502 [3] 陆静, 刘仁臣, 刘洋. 随机腐蚀结构对薄膜硅太阳能电池效率的影响[C]//第21届全国分子光谱学学术会议暨2020年光谱年会论文集. 2020: 2Lu Jing, Liu Renchen, Liu Yang. Effect of random corrosion structure on the efficiency of thin film silicon solar sells[C]//21st National Conference on Molecular Spectroscopy and Annual Meeting of Spectrum 2020.2020: 2 [4] Sah C T, Noyce R N, Shockley W. Carrier generation and recombination in P-N junctions and P-N junction characteristics[J]. Proceedings of the IRE, 1957, 45(9): 1228-1243. doi: 10.1109/JRPROC.1957.278528 [5] Hashmi G, Akand A R, Hoq M, et al. Study of the enhancement of the efficiency of the monocrystalline silicon solar cell by optimizing effective parameters using PC1D simulation[J]. Silicon, 2018, 10(4): 1653-1660. doi: 10.1007/s12633-017-9649-3 [6] 许伟民, 何湘鄂, 赵红兵, 等. 太阳能电池的原理及种类[J]. 发电设备, 2011, 25(2):137-140. (Xu Weimin, He Xiang’e, Zhao Hongbing, et al. Working principles and type of solar cells[J]. Power Equipment, 2011, 25(2): 137-140 doi: 10.3969/j.issn.1671-086X.2011.02.020 [7] 张智强, 汪石农. 太阳能电池数学模型的仿真与研究[J]. 电子世界, 2019(16):75-76. (Zhang Zhiqiang, Wang Shinong. Simulation and research on mathematical model of solar cell[J]. Electronics World, 2019(16): 75-76 [8] 孙园园, 肖华锋, 谢少军. 太阳能电池工程简化模型的参数求取和验证[J]. 电力电子技术, 2009, 43(6):44-46. (Sun Yuanyuan, Xiao Huafeng, Xie Shaojun. Parameter solution and verification of solar cells’ engineering simplified model[J]. Power Electronics, 2009, 43(6): 44-46 doi: 10.3969/j.issn.1000-100X.2009.06.017 [9] 杨利利. 晶体硅太阳能电池效率异常分析与研究[J]. 电子工业专用设备, 2019, 48(6):1-4,39. (Yang Lili. Research on efficiency abnormality of crystalline silicon solar cells[J]. Equipment for Electronic Products Manufacturing, 2019, 48(6): 1-4,39 [10] 丁美斌, 娄朝刚, 王琦龙, 等. GaAs量子阱太阳能电池量子效率的研究[J]. 物理学报, 2014, 63:198502. (Ding Meibin, Lou Chaogang, Wang Qilong, et al. Influence of quantum wells on the quantum efficiency of GaAs solar cells[J]. Acta Physica Sinica, 2014, 63: 198502 doi: 10.7498/aps.63.198502 [11] Gudovskikh A, Kudryashov D, Baranov A, et al. Impact of interface recombination on quantum efficiency of a-Si: H/c-Si solar cells based on Si wires[J]. Physica Status Solidi, 2021, 218: 2170061. doi: 10.1002/pssa.202170061 [12] Yamaguchi M, Zhu L, Akiyama H, et al. Analysis of future generation solar cells and materials[J]. Japanese Journal of Applied Physics, 2018, 57: 04FS03. doi: 10.7567/JJAP.57.04FS03 [13] 高越, 王宙, 付传起, 等. 氮化硅减反射膜制备工艺对组织结构及折射率影响的研究[J]. 真空科学与技术学报, 2019, 39(6):455-459. (Gao Yue, Wang Zhou, Fu Chuanqi, et al. Synthesis and characterization of silicon nitride antireflective film by pulsed laser deposition[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(6): 455-459 [14] 秦尤敏, 高华, 张剑. 晶体硅太阳电池减反射膜的研究[J]. 上海有色金属, 2011, 32(4):179-181,191. (Qin Youmin, Gao Hua, Zhang Jian. Investigation on anti-reflection film of crystalline silicon solar cells[J]. Shanghai Nonferrous Metals, 2011, 32(4): 179-181,191 doi: 10.3969/j.issn.1005-2046.2011.04.007 [15] Chaneliere C, Autran J L, Devine R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications[J]. Materials Science and Engineering:R:Reports, 1998, 22(6): 269-322. doi: 10.1016/S0927-796X(97)00023-5 [16] 赵保星. 晶硅太阳电池TiO2陷光薄膜[D]. 长沙: 中南大学, 2012Zhao Baoxing. The TiO2 light trapping films for solar cells[D]. Changsha: Central South University, 2012