留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减反膜对单晶硅太阳能电池性能的影响分析

孙洪伟 郝建红 赵强 范杰清 张芳 董志伟

孙洪伟, 郝建红, 赵强, 等. 减反膜对单晶硅太阳能电池性能的影响分析[J]. 强激光与粒子束, 2021, 33: 123021. doi: 10.11884/HPLPB202133.210240
引用本文: 孙洪伟, 郝建红, 赵强, 等. 减反膜对单晶硅太阳能电池性能的影响分析[J]. 强激光与粒子束, 2021, 33: 123021. doi: 10.11884/HPLPB202133.210240
Sun Hongwei, Hao Jianhong, Zhao Qiang, et al. Effect of antireflection film on performance of monocrystalline silicon solar cell[J]. High Power Laser and Particle Beams, 2021, 33: 123021. doi: 10.11884/HPLPB202133.210240
Citation: Sun Hongwei, Hao Jianhong, Zhao Qiang, et al. Effect of antireflection film on performance of monocrystalline silicon solar cell[J]. High Power Laser and Particle Beams, 2021, 33: 123021. doi: 10.11884/HPLPB202133.210240

减反膜对单晶硅太阳能电池性能的影响分析

doi: 10.11884/HPLPB202133.210240
基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1730247);高功率微波技术重点实验室项目(6142605200301)
详细信息
    作者简介:

    孙洪伟,sunhongwei@ncepu.edu.cn

    通讯作者:

    赵 强,zhaoq@iapcm.ac.cn

  • 中图分类号: TM914.4+1

Effect of antireflection film on performance of monocrystalline silicon solar cell

  • 摘要: 在太阳能电池效率的评价中,电池材料、掺杂浓度、扩散长度等都是比较重要的参数,合理地改变相关参数可以优化太阳能电池的性能,提高电池效率。此外,在太阳能电池表面镀一层具有减反作用的光学薄膜(简称减反膜)也是提高电池效率的重要手段。以提高电池效率为目标,对单晶硅太阳能电池的掺杂浓度和扩散长度等微观参数进行计算优化,分析了掺杂浓度和扩散长度变化对电池效率的影响。并在此基础上分析了不同类型的减反膜对于电池效率的影响,给出了最佳减反膜材料及其膜系厚度,并且结合镀膜后电池量子效率的变化验证了其准确性。结果表明,在优化电池掺杂浓度和扩散长度的基础上,选择合适的减反膜,电池效率最高可达20.35%,相比于优化前提高了8.25%。
  • 图  1  单晶硅太阳能电池结构图

    Figure  1.  Structure diagram of monocrystalline silicon solar cell

    图  2  掺杂浓度对电池效率的影响

    Figure  2.  Effect of doping concentration on cell efficiency

    图  3  优化前后电池特性曲线

    Figure  3.  Battery characteristic curve before and after optimization

    图  4  不同减反膜情况下的电池I-U特性曲线图

    Figure  4.  I-U characteristic curve of different antireflection films

    图  5  减反膜厚度与电池效率规律

    Figure  5.  Relationship between antireflection film thickness and cell efficiency

    图  6  不同减反膜下电池的量子效率

    Figure  6.  Quantum efficiency of batteries with different antireflection membranes

    图  7  有无金字塔结构电池性能对比

    Figure  7.  Comparison of battery performance with and without pyramid structure

    表  1  无减反膜电池建模

    Table  1.   Simulation without antireflection film

    parameterbattery
    area/cm2
    battery
    thickness/μm
    base doping
    concentration/cm−3
    emitter doping
    concentration/cm−3
    diffusion
    length/μm
    before optimization10×103005×10161×1019130.5
    after optimization10×103001×10171×1018200.3
    下载: 导出CSV

    表  2  本文建模结果与文献[4]结果比对

    Table  2.   The modeling results in this paper are compared with those in Ref. [4]

    Isc/AUoc/VPm/WFFη/%
    Ref. [4] modeling results2.280.561.210.83512.10
    modeling results before optimization2.2750.63671.2110.83612.11
    modeling results after optimization2.420.67441.3750.84213.75
    下载: 导出CSV

    表  3  减反膜材料的折射率

    Table  3.   Refractive index of antireflection film materials

    antireflection film materialrefractive index
    SiNx2.2
    SiNx:H2
    SiO21.52
    Ta2O52.1~2.26
    TiO22.39~2.47
    下载: 导出CSV

    表  4  不同减反膜情况下太阳能电池参数

    Table  4.   Parameters of solar cells with different antireflection coatings

    antireflection film materialUoc/VIsc/APm/Wη/%FF
    SiNx0.683 5923.435 181.981 8419.820.843 960 498
    SiNx:H0.683 8583.464 761.999 620.000.843 925 363
    SiO20.682 1753.277 721.887 4118.870.844 109 137
    Ta2O50.683 6363.440 051.984 7719.850.843 957 365
    TiO20.682 8553.353 341.932 7519.330.844 052 769
    下载: 导出CSV
  • [1] 臧子豪, 李晗升, 姜显园, 等. 锡钙钛矿太阳能电池的进展与展望[J]. 物理化学学报, 2021, 37(4):14-25. (Zang Zihao, Li Hansheng, Jiang Xianyuan, et al. Progress and perspective of tin perovskite solar cells[J]. Acta Physico-Chimica Sinica, 2021, 37(4): 14-25
    [2] 李腾飞, 占肖卫. 有机光伏研究进展[J]. 化学学报, 2021, 79(3):257-283. (Li Tengfei, Zhan Xiaowei. Advances in organic photovoltaics[J]. Acta Chimica Sinica, 2021, 79(3): 257-283 doi: 10.6023/A20110502
    [3] 陆静, 刘仁臣, 刘洋. 随机腐蚀结构对薄膜硅太阳能电池效率的影响[C]//第21届全国分子光谱学学术会议暨2020年光谱年会论文集. 2020: 2

    Lu Jing, Liu Renchen, Liu Yang. Effect of random corrosion structure on the efficiency of thin film silicon solar sells[C]//21st National Conference on Molecular Spectroscopy and Annual Meeting of Spectrum 2020.2020: 2
    [4] Sah C T, Noyce R N, Shockley W. Carrier generation and recombination in P-N junctions and P-N junction characteristics[J]. Proceedings of the IRE, 1957, 45(9): 1228-1243. doi: 10.1109/JRPROC.1957.278528
    [5] Hashmi G, Akand A R, Hoq M, et al. Study of the enhancement of the efficiency of the monocrystalline silicon solar cell by optimizing effective parameters using PC1D simulation[J]. Silicon, 2018, 10(4): 1653-1660. doi: 10.1007/s12633-017-9649-3
    [6] 许伟民, 何湘鄂, 赵红兵, 等. 太阳能电池的原理及种类[J]. 发电设备, 2011, 25(2):137-140. (Xu Weimin, He Xiang’e, Zhao Hongbing, et al. Working principles and type of solar cells[J]. Power Equipment, 2011, 25(2): 137-140 doi: 10.3969/j.issn.1671-086X.2011.02.020
    [7] 张智强, 汪石农. 太阳能电池数学模型的仿真与研究[J]. 电子世界, 2019(16):75-76. (Zhang Zhiqiang, Wang Shinong. Simulation and research on mathematical model of solar cell[J]. Electronics World, 2019(16): 75-76
    [8] 孙园园, 肖华锋, 谢少军. 太阳能电池工程简化模型的参数求取和验证[J]. 电力电子技术, 2009, 43(6):44-46. (Sun Yuanyuan, Xiao Huafeng, Xie Shaojun. Parameter solution and verification of solar cells’ engineering simplified model[J]. Power Electronics, 2009, 43(6): 44-46 doi: 10.3969/j.issn.1000-100X.2009.06.017
    [9] 杨利利. 晶体硅太阳能电池效率异常分析与研究[J]. 电子工业专用设备, 2019, 48(6):1-4,39. (Yang Lili. Research on efficiency abnormality of crystalline silicon solar cells[J]. Equipment for Electronic Products Manufacturing, 2019, 48(6): 1-4,39
    [10] 丁美斌, 娄朝刚, 王琦龙, 等. GaAs量子阱太阳能电池量子效率的研究[J]. 物理学报, 2014, 63:198502. (Ding Meibin, Lou Chaogang, Wang Qilong, et al. Influence of quantum wells on the quantum efficiency of GaAs solar cells[J]. Acta Physica Sinica, 2014, 63: 198502 doi: 10.7498/aps.63.198502
    [11] Gudovskikh A, Kudryashov D, Baranov A, et al. Impact of interface recombination on quantum efficiency of a-Si: H/c-Si solar cells based on Si wires[J]. Physica Status Solidi, 2021, 218: 2170061. doi: 10.1002/pssa.202170061
    [12] Yamaguchi M, Zhu L, Akiyama H, et al. Analysis of future generation solar cells and materials[J]. Japanese Journal of Applied Physics, 2018, 57: 04FS03. doi: 10.7567/JJAP.57.04FS03
    [13] 高越, 王宙, 付传起, 等. 氮化硅减反射膜制备工艺对组织结构及折射率影响的研究[J]. 真空科学与技术学报, 2019, 39(6):455-459. (Gao Yue, Wang Zhou, Fu Chuanqi, et al. Synthesis and characterization of silicon nitride antireflective film by pulsed laser deposition[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(6): 455-459
    [14] 秦尤敏, 高华, 张剑. 晶体硅太阳电池减反射膜的研究[J]. 上海有色金属, 2011, 32(4):179-181,191. (Qin Youmin, Gao Hua, Zhang Jian. Investigation on anti-reflection film of crystalline silicon solar cells[J]. Shanghai Nonferrous Metals, 2011, 32(4): 179-181,191 doi: 10.3969/j.issn.1005-2046.2011.04.007
    [15] Chaneliere C, Autran J L, Devine R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications[J]. Materials Science and Engineering:R:Reports, 1998, 22(6): 269-322. doi: 10.1016/S0927-796X(97)00023-5
    [16] 赵保星. 晶硅太阳电池TiO2陷光薄膜[D]. 长沙: 中南大学, 2012

    Zhao Baoxing. The TiO2 light trapping films for solar cells[D]. Changsha: Central South University, 2012
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  218
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-11-18
  • 网络出版日期:  2021-12-04
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回