留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压微波等离子体射流装置放电特性研究

潘惠 王舸 杨阳

潘惠, 王舸, 杨阳. 大气压微波等离子体射流装置放电特性研究[J]. 强激光与粒子束, 2022, 34: 049001. doi: 10.11884/HPLPB202234.210277
引用本文: 潘惠, 王舸, 杨阳. 大气压微波等离子体射流装置放电特性研究[J]. 强激光与粒子束, 2022, 34: 049001. doi: 10.11884/HPLPB202234.210277
Pan Hui, Wang Ge, Yang Yang. Design and study of atmospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams, 2022, 34: 049001. doi: 10.11884/HPLPB202234.210277
Citation: Pan Hui, Wang Ge, Yang Yang. Design and study of atmospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams, 2022, 34: 049001. doi: 10.11884/HPLPB202234.210277

大气压微波等离子体射流装置放电特性研究

doi: 10.11884/HPLPB202234.210277
基金项目: 四川省科技计划重点研发项目(2021YFG0265)
详细信息
    作者简介:

    潘 惠,1475963631@qq.com

    通讯作者:

    杨 阳,yyang@scu.edu.cn

  • 中图分类号: O531

Design and study of atmospheric pressure microwave plasma jet

  • 摘要: 基于同轴传输线结构设计了两种不同喷嘴结构的大气压微波等离子体射流(MW-APPJ)装置,其工作频率2.45 GHz,工作气体为氩气,分别研究了两种不同喷嘴结构对等离子体放电特性产生的影响。仿真结果表明,MW-APPJ在气体喷嘴处会产生高强度的电场,经过优化结构,实现在频率2.45 GHz下,喷嘴处的场强满足氩气电离的击穿场强阈值要求。同时,利用多物理场耦合仿真软件对装置的气流分布进行了稳态模拟,并通过实验对比分析了两种喷嘴结构下大气压氩等离子体射流的基本特性。实验结果表明,不同的喷嘴结构会影响等离子体装置的反射系数随输入功率的变化规律,但并不影响等离子体射流长度随输入功率的变化规律和反射功率随进气流量的变化规律;同时,在大气压下,稳态微波等离子体射流呈现出类金属性,等离子体中的电子只能在很薄的区域中吸收微波能量,因而造成微波的反射功率较大。
  • 图  1  等离子体射流结构示意图及实物图

    Figure  1.  Structure diagram of plasma jet device

    图  2  反射系数随频率变化的曲线

    Figure  2.  Dependence of reflection parameter on the frequency

    图  3  腔体截面的电场分布

    Figure  3.  Electric field distribution of cavity section

    图  4  不同进气流量下等离子体域的气流流速分布

    Figure  4.  Velocity distribution under different inlet flow

    图  5  微波等离子体射流实验系统流程示意图

    Figure  5.  Schematic diagram of experimental setup

    图  6  微波等离子体射流实验系统图

    Figure  6.  Photograph of the experimental setup

    图  7  反射系数S11随输入功率变化的曲线

    Figure  7.  Dependence of S-parameter on the input power

    图  8  射流长度随输入功率变化的曲线

    Figure  8.  Dependence of plasma-jet length on the input power

    图  9  反射功率随进气流量变化的曲线

    Figure  9.  Dependence of reflected power on the inlet flow

    表  1  优化结构尺寸

    Table  1.   Optimized structure size

    itemΦ1/mmΦ2/mml1/mml2/mm
    typeⅠ242077
    typeⅡ794.577.5
    下载: 导出CSV

    表  2  仿真结果

    Table  2.   Results of simulation

    itemf/GHzS11/dBEmax/(V·m−1)
    typeⅠ2.45−18.453.04×105
    typeⅡ2.45−56.842.97×105
    下载: 导出CSV
  • [1] 李文浩, 褚向前, 赵世奇, 等. 大气压宽径向空气等离子体射流装置的设计、实验和仿真研究[J]. 真空科学与技术学报, 2019, 39(5):420-428. (Li Wenhao, Chu Xiangqian, Zhao Shiqi, et al. Modification of atmospheric pressure air plasma jet: a simulation and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(5): 420-428
    [2] Onyshchenko I, De Geyter N, Morent R. Improvement of the plasma treatment effect on PET with a newly designed atmospheric pressure plasma jet[J]. Plasma Processes and Polymers, 2017, 14: 1600200. doi: 10.1002/ppap.201600200
    [3] Lehmann A, Pietag F, Arnold T. Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device[J]. Clinical Plasma Medicine, 2017, 7/8: 16-23. doi: 10.1016/j.cpme.2017.06.001
    [4] Fu Wenjie, Zhang Chaoyang, Nie Cong, et al. A high efficiency low-temperature microwave-driven atmospheric pressure plasma jet[J]. Applied Physics Letters, 2019, 114: 254106. doi: 10.1063/1.5108538
    [5] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12):3697-3727. (Li Heping, Yu Daren, Sun Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727
    [6] Park G Y, Park S J, Choi M Y, et al. Atmospheric-pressure plasma sources for biomedical applications[J]. Plasma Sources Science and Technology, 2012, 21: 043001. doi: 10.1088/0963-0252/21/4/043001
    [7] Choi J, Iza F, Do H J, et al. Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator[J]. Plasma Sources Science and Technology, 2009, 18: 025029. doi: 10.1088/0963-0252/18/2/025029
    [8] Kim J, Katsurai M, Kim D, et al. Microwave-excited atmospheric-pressure plasma jets using a microstrip line[J]. Applied Physics Letters, 2008, 93: 191505. doi: 10.1063/1.3025841
    [9] 张庆, 张贵新, 王黎明, 等. 大气压微波等离子体炬的仿真设计与实验[J]. 强激光与粒子束, 2010, 22(2):315-318. (Zhang Qing, Zhang Guixin, Wang Liming, et al. Design and experiment of an atmospheric pressure microwave plasma torch[J]. High Power Laser and Particle Beams, 2010, 22(2): 315-318 doi: 10.3788/HPLPB20102202.0315
    [10] Wang Yaoyao, Wang Zhongli, Wu Dajun, et al. Design of a fully automatic microwave plasma torch system[J]. Review of Scientific Instruments, 2019, 90: 055112. doi: 10.1063/1.5097182
    [11] 任昊. 基于COMSOL的MPT离子化源等离子体建模仿真[D]. 杭州: 浙江大学, 2014

    Ren Hao. Modeling and simulation of MPT ionization source based on COMSOL[D]. Hangzhou: Zhejiang University, 2014
    [12] Li Shouzhe, Xu Maochun, Zhang Xin, et al. A pulse-modulated nonequilibrium atmospheric-pressure microwave argon plasma discharge preionized by a kilohertz excited plasma jet[J]. Applied Physics Letters, 2012, 100: 174101. doi: 10.1063/1.4705433
    [13] Lu Xinpei, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 2016, 630: 1-84. doi: 10.1016/j.physrep.2016.03.003
    [14] 张冠军, 詹江杨, 邵先军, 等. 大气压氩气等离子体射流长度的影响因素[J]. 高电压技术, 2011, 37(6):1432-1438. (Zhang Guanjun, Zhan Jiangyang, Shao Xianjun, et al. Influence factor analysis on jet length of atmospheric pressure argon plasma jets[J]. High Voltage Engineering, 2011, 37(6): 1432-1438
    [15] Yue Yuanfu, Pei Xuekai, Lu Xinpei. Comparison on the absolute concentrations of hydroxyl and atomic oxygen generated by five different nonequilibrium atmospheric-pressure plasma jets[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1(6): 541-549. doi: 10.1109/TRPMS.2017.2757037
    [16] Woo W, DeGroot J S. Microwave absorption and plasma heating due to microwave breakdown in the atmosphere[J]. The Physics of Fluids, 1984, 27(475): 475-487.
    [17] 刘繁, 汪建华, 王秋良, 等. 常压微波等离子体炬装置的模拟与设计[J]. 强激光与粒子束, 2011, 23(6):1504-1508. (Liu Fan, Wang Jianhua, Wang Qiuliang, et al. Numerical modeling and design of atmospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams, 2011, 23(6): 1504-1508 doi: 10.3788/HPLPB20112306.1504
    [18] 刘文正, 贾凌云, 孔飞, 等. 阵列式等离子体射流特性的研究[J]. 北京交通大学学报, 2011, 35(2):105-108. (Liu Wenzheng, Jia Lingyun, Kong Fei, et al. Study on the characteristics of array plasma jet[J]. Journal of Beijing Jiaotong University, 2011, 35(2): 105-108 doi: 10.3969/j.issn.1673-0291.2011.02.019
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1056
  • HTML全文浏览量:  721
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-12-30
  • 网络出版日期:  2022-01-22
  • 刊出日期:  2022-04-15

目录

    /

    返回文章
    返回