Aero-optical effect around turrets in high speed regime
-
摘要: 针对高速流场下凸台周围的气动光学效应,对不同马赫数下的三种凸台形状周围的流场进行仿真计算,计算得到流场的密度变化,计算了光线经流场传输后的光程差。仿真结果表明:随马赫数增大,光程差逐步增大;同等条件下,不同出射角度对应的光程差不同,凸台存在强烈的尾流区域,从而导致较大的光程差;在马赫数达到跨音速时,凸台顶端也会产生较大的光程差;曲率较小的凸台结构对周围流场的影响较小。Abstract: This study simulated the aero-optical effect around the turret at different Mach numbers for three turret designs, calculated the density distribution of the flow field and the optical path difference after transmission in the flow field. The optical path difference increases with the increase of Mach number. The optical distortion over the turret field-of-regard is dependent on the beam direction, and there is large optical distortion in wake area. When the speed reaches transonic, the top of the turret will also produce large optical distortion. For different turret designs, the smaller the curvature, the smaller the aero-optical effect.
-
Key words:
- aero-optics /
- computational fluid dynamics /
- simulation /
- optics window /
- density /
- optical path difference
-
表 1 不同飞行速度下的光程差(turret Ⅱ,出射角度为中轴线上45°)
Table 1. OPDs at different flight speed (turret Ⅱ, AZ: 0°, EL: 45°)
Ma OPD(minimum)/
μmOPD(maximum)/
μmOPD(average)/
μm0.4 0.123 0.843 0.472 0.8 1.573 4.406 3.011 1.5 23.560 26.606 25.345 表 2 不同凸台形状下的光程差(出射角度为中轴线上45°,飞行速度为0.8Ma)
Table 2. OPDs of different turret shapes (AZ: 0°, EL: 45°, 0.8Ma)
turret
shapeOPD(minimum)/
μmOPD(maximum)/
μmOPD(average)/
μmturret Ⅰ 1.9320 4.6160 3.2908 turret Ⅱ 1.5729 4.4058 3.0110 turret Ⅲ 1.1186 4.1705 2.7100 -
[1] Porter C, Gordeyev S, Zenk M, et al. Flight measurements of aero-optical distortions from a flat-windowed turret on the airborne aero-optics laboratory (AAOL)[C]//42nd AIAA Plasmadynamics and Lasers Conference. 2011: 27-30. [2] Busse F H. Visualizing the dynamics of the onset of turbulence[J]. Science, 2004, 305(5690): 1574-1575. doi: 10.1126/science.1102824 [3] Jumper E J, Fitzgerald E J. Recent advances in aero-optics[J]. Progress in Aerospace Sciences, 2001, 37(3): 299-329. doi: 10.1016/S0376-0421(01)00008-2 [4] Gordeyev S, Jumper E J, Ng T T, et al. Aero-optical characteristics of compressible, subsonic turbulent boundary layers[C]//34th AIAA Plasmadynamics and Lasers Conference. 2003. [5] Mathews E R, Wang Kan, Wang Meng, et al. LEs of an aero-optical turret flow at high Reynolds number[C]//54th AIAA Aerospace Sciences Meeting. 2016. [6] Coirier W J, Porter C, Barber J, et al. Aero-optical evaluation of notional turrets in subsonic, transonic and supersonic regimes[C]//45th AIAA Plasmadynamics & Lasers Conference. 2014. [7] 冯定华, 李桦, 肖飞, 等. 光学窗口凹腔流场的光学传输效应研究[J]. 光学学报, 2012, 32:0401004. (Feng Dinghua, Li Hua, Xiao Fei, et al. Study on optical transmission effect of optical window’s cavity flow[J]. Acta Optica Sinica, 2012, 32: 0401004 doi: 10.3788/AOS201232.0401004 [8] 路大举, 张凯, 董航, 等. 共形转塔气动光学效应时空特性研究(英文)[J]. 应用光学, 2019, 40(6):1022-1032. (Lu Daju, Zhang Kai, Dong Hang, et al. Space-time characteristics of aero-optical effect around conformal turrets[J]. Journal of Applied Optics, 2019, 40(6): 1022-1032 doi: 10.5768/JAO201940.0601015 [9] 吴琳, 房建成, 杨照华. 高超声速湍流流场高折射率梯度区域气动光学畸变仿真研究[J]. 光学学报, 2009, 29(11):2952-2957. (Wu Lin, Fang Jiancheng, Yang Zhaohua. Study on aero-optical distortion simulation of high refraction index gradient regions in hypersonic turbulent flow[J]. Acta Optica Sinica, 2009, 29(11): 2952-2957 doi: 10.3788/AOS20092911.2952 [10] 蒋倩雯. 拉盖尔-高斯光束的气动光学效应[D]. 南京: 南京理工大学, 2017Jiang Qianwen. Aero-optical effects of Laguerre-Ggaussian vortex beams[D]. Nanjing: Nanjing University of Science and Technology, 2017 [11] Jumper E J, Gordeyev S, Cavalieri D, et al. Airborne aero-optics laboratory-transonic (AAOL-T)[C]//53rd AIAA Aerospace Sciences Meeting. 2015. [12] Wang Meng, Mani A, Gordeyev S. Physics and computation of aero-optics[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 299-321. doi: 10.1146/annurev-fluid-120710-101152 [13] 邓诗涛. 变折射率介质中的光传输及像质评价[D]. 杭州: 浙江大学, 2008Deng Shitao. Image evaluation of the optical transmission through inhomogeneous medium[D]. Hangzhou: Zhejiang University, 2008