留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kahan线性化快速计算梯度磁场下磁流变抛光区域抛光粉沉降特性

杨航 张帅 张云飞 黄文 何建国

杨航, 张帅, 张云飞, 等. 基于Kahan线性化快速计算梯度磁场下磁流变抛光区域抛光粉沉降特性[J]. 强激光与粒子束, 2022, 34: 082002. doi: 10.11884/HPLPB202234.210353
引用本文: 杨航, 张帅, 张云飞, 等. 基于Kahan线性化快速计算梯度磁场下磁流变抛光区域抛光粉沉降特性[J]. 强激光与粒子束, 2022, 34: 082002. doi: 10.11884/HPLPB202234.210353
Yang Hang, Zhang Shuai, Zhang Yunfei, et al. Fast calculation of polishing powder sedimentation characteristics in magnetorheological polishing area under gradient magnetic field based on Kahan linearization[J]. High Power Laser and Particle Beams, 2022, 34: 082002. doi: 10.11884/HPLPB202234.210353
Citation: Yang Hang, Zhang Shuai, Zhang Yunfei, et al. Fast calculation of polishing powder sedimentation characteristics in magnetorheological polishing area under gradient magnetic field based on Kahan linearization[J]. High Power Laser and Particle Beams, 2022, 34: 082002. doi: 10.11884/HPLPB202234.210353

基于Kahan线性化快速计算梯度磁场下磁流变抛光区域抛光粉沉降特性

doi: 10.11884/HPLPB202234.210353
基金项目: 国家“高档数控机床与基础制造装备”科技重大专项“巨型激光装置光学元件超精密制造系统示范工程”课题项目(2017ZX04022001);贵州省基础研究计划项目(黔科合基础-ZK[2021]一般272);遵义市科技局科技研发项目(遵市科合HZ字[2020]21号)
详细信息
    作者简介:

    杨航:杨 航,yhangde@qq.com

  • 中图分类号: TH164

Fast calculation of polishing powder sedimentation characteristics in magnetorheological polishing area under gradient magnetic field based on Kahan linearization

  • 摘要: 针对抛光粉沉降特性数值计算这一超大规模非线性问题,基于Kahan线性化解决了超大规模流固耦合计算问题。研究了以羟基铁粉和硅油为主要成分组合而成的抛光粉多相流在梯度磁场下抛光区域的沉降特性。以质量分数70%、粒径5 µm的羟基铁粉和粘度为0.973 Pa·s的硅油组合而成的抛光粉为研究对象,实现了不同的抛光轮转速、不同嵌入深度以及不同羰基铁粉质量分数情况下的沉降规律分析。结果发现:磁流变抛光区域的抛光粉会随着抛光轮转速的增大而增多;当到达出口时,抛光粉的分布趋于稳定状态;抛光粉会随着嵌入深度的增加而增多并存在饱和区;羟基铁粉的质量分数以非线性的方式影响沉降能力。
  • 图  1  磁流变抛光区域抛光粉沉降示意图

    Figure  1.  Schematic diagram of polishing powder sedimentation in the magnetorheological polishing area

    图  2  抛光轮转速ω在100 r/min至275 r/min时抛光区域抛光粉的沉降分布云图

    Figure  2.  Sedimentation distribution cloud diagram of the polishing powder in the polishing area when the rotating speed ω of the polishing wheel is 100 r/min to 275 r/min

    图  3  抛光轮转速对抛光区域抛光粉沉降的影响规律

    Figure  3.  Influence of the polishing wheel speed on the deposition of polishing powder in the polishing area

    图  4  抛光粉嵌入深度h在0.65 mm至1.00 mm时抛光区域抛光粉的沉降分布云图

    Figure  4.  Sedimentation distribution cloud diagram of the polishing powder in the polishing area when the embedding depth h of polishing powder is between 0.65 mm and 1.00 mm

    图  5  嵌入深度对抛光区域抛光粉沉降的影响规律

    Figure  5.  Influence of embedding depth on the sedimentation of polishing powder in the polishing area

    图  6  羟基铁粉的质量分数w0在20%至90%时抛光区域抛光粉的沉降分布云图

    Figure  6.  Sedimentation distribution cloud diagram of the polishing powder in the polishing area when the mass fraction w0 of the hydroxy/iron powder is 20% to 90%

    图  7  羟基铁粉的质量分数对抛光区域抛光粉沉降的影响规律

    Figure  7.  Influence of the mass fraction of hydroxyl iron powder on the sedimentation of polishing powder in the polishing area

    表  1  实验物理参数

    Table  1.   Experimental physical parameters

    particle
    diameter/μm
    air-silicon
    soil tensor/N
    silicone oil
    viscosity/Pa·s
    silicone oil
    density/(kg·m−3)
    import and export
    pressure/Pa
    radius of curvature of the
    polishing wheel/mm
    50.040.9730.94101325150
    下载: 导出CSV

    表  2  抛光轮不同转速参数

    Table  2.   Different speed parameters of polishing wheel

    mass fraction/%embedded depth /mmpolishing rotation /r/min
    70 1.1 100
    70 1.1 125
    70 1.1 150
    70 1.1 175
    70 1.1 200
    70 1.1 225
    70 1.1 250
    70 1.1 275
    下载: 导出CSV

    表  3  不同嵌入深度参数

    Table  3.   Different embedding depth parameters

    mass fraction/%polishing rotation/(r·min−1)embedded depth h/mm
    70 150 0.65
    70 150 0.70
    70 150 0.75
    70 150 0.80
    70 150 0.85
    70 150 0.90
    70 150 0.95
    70 150 1.00
    下载: 导出CSV

    表  4  改变抛光粉中羟基铁粉的质量分数

    Table  4.   Changing the mass fraction of hydroxyl iron powder in polishing powder

    silicone oil
    viscosity/(mPa·s)
    hydroxy liron
    powder/μm
    mass fraction
    w0/%
    97.3 5 20
    97.3 5 30
    97.3 5 40
    97.3 5 50
    97.3 5 60
    97.3 5 70
    97.3 5 80
    97.3 5 90
    下载: 导出CSV
  • [1] 康桂文. 磁流变抛光技术的研究现状及其发展[J]. 机床与液压, 2008, 36(3):173-175,182. (Kang Guiwen. Research and development of magnetorheological finishing[J]. Machine Tool & Hydraulics, 2008, 36(3): 173-175,182 doi: 10.3969/j.issn.1001-3881.2008.03.058

    Kang Guiwen. Research and development of magnetorheological finishing[J]. Machine Tool & Hydraulics, 2008, 36(3): 173-175, 182 doi: 10.3969/j.issn.1001-3881.2008.03.058
    [2] 王嘉琪, 肖强. 磁流变抛光技术的研究进展[J]. 表面技术, 2019, 48(10):317-328. (Wang Jiaqi, Xiao Qiang. Research progress of magnetorheological polishing technology[J]. Surface Technology, 2019, 48(10): 317-328

    Wang Jiaqi, Xiao Qiang. Research progress of magnetorheological polishing technology[J]. Surface Technology, 2019, 48(10): 317-328
    [3] 张峰, 余景池, 张学军, 等. 对磁流变抛光技术中磁场的分析[J]. 仪器仪表学报, 2001, 22(1):42-44,48. (Zhang Feng, Yu Jingchi, Zhang Xuejun, et al. Analysis of magnetic field used in magnetorheological finishing[J]. Chinese Journal of Scientific Instrument, 2001, 22(1): 42-44,48 doi: 10.3321/j.issn:0254-3087.2001.01.012

    Zhang Feng, Yu Jingchi, Zhang Xuejun, et al. Analysis of magnetic field used in magnetorheological finishing[J]. Chinese Journal of Scientific Instrument, 2001, 22(1): 42-44, 48 doi: 10.3321/j.issn:0254-3087.2001.01.012
    [4] 路家斌, 宾水明, 阎秋生, 等. 磁场分布对多磨头磁流变抛光材料去除的影响[J]. 润滑与密封, 2020, 45(4):20-26. (Lu Jiabin, Bin Shuiming, Yan Qiusheng, et al. Effect of magnetic field distribution on material removal in magnetorheological finishing with multiple polishing heads[J]. Lubrication Engineering, 2020, 45(4): 20-26 doi: 10.3969/j.issn.0254-0150.2020.04.004

    Lu Jiabin, Bin Shuiming, Yan Qiusheng, et al. Effect of magnetic field distribution on material removal in magnetorheological finishing with multiple polishing heads[J]. Lubrication Engineering, 2020, 45(4): 20-26 doi: 10.3969/j.issn.0254-0150.2020.04.004
    [5] 姜涛. 高效气囊抛光中频误差控制路径规划[J]. 广东化工, 2020, 47(19):58-60. (Jiang Tao. Path planning of mid-spatial frequency control in high efficiency bonnet polishing[J]. Guangdong Chemical Industry, 2020, 47(19): 58-60 doi: 10.3969/j.issn.1007-1865.2020.19.024

    Jiang Tao. Path planning of mid-spatial frequency control in high efficiency bonnet polishing[J]. Guangdong Chemical Industry, 2020, 47(19): 58-60 doi: 10.3969/j.issn.1007-1865.2020.19.024
    [6] 顾勇兵, 张云, 王于岳, 等. 磁流变抛光液沉降稳定性的研究[J]. 金刚石与磨料磨具工程, 2013, 33(5):27-30,34. (Gu Yongbing, Zhang Yun, Wang Yuyue, et al. Study on the sedimentation stability of magnetorheological fluid[J]. Diamond & Abrasives Engineering, 2013, 33(5): 27-30,34

    Gu Yongbing, Zhang Yun, Wang Yuyue, et al. Study on the sedimentation stability of magnetorheological fluid[J]. Diamond & Abrasives Engineering, 2013, 33(5): 27-30, 34
    [7] 王弘义, 罗一平, 纪东升, 等. 基于动力学模拟的磁流变液沉降模拟方法[J]. 农业装备与车辆工程, 2020, 58(12):51-55. (Wang Hongyi, Luo Yiping, Ji Dongsheng, et al. Simulation method of MR fluid settlement based on dynamic simulation[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(12): 51-55 doi: 10.3969/j.issn.1673-3142.2020.12.012

    Wang Hongyi, Luo Yiping, Ji Dongsheng, et al. Simulation method of MR fluid settlement based on dynamic simulation[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(12): 51-55 doi: 10.3969/j.issn.1673-3142.2020.12.012
    [8] 尹韶辉, 邓子默, 郭源帆, 等. 单晶碳化硅的电磁场励磁大抛光模磁流变抛光[J]. 表面技术, 2020, 49(10):309-315. (Yin Shaohui, Deng Zimo, Guo Yuanfan, et al. Magnetorheological polishing using large polishing tool excited by electromagnetic field for silicon carbide wafer[J]. Surface Technology, 2020, 49(10): 309-315

    Yin Shaohui, Deng Zimo, Guo Yuanfan, et al. Magnetorheological polishing using large polishing tool excited by electromagnetic field for silicon carbide wafer[J]. Surface Technology, 2020, 49(10): 309-315
    [9] 金宝炎, 包小倩, 张茂才, 等. 表面改性对磁流变液稳定性和磁流变性能的影响[J]. 磁性材料及器件, 2007, 38(4):51-54. (Jin Baoyan, Bao Xiaoqian, Zhang Maocai, et al. Effect of surface modification on the stability and magnetorheology of magnetorheological fluids[J]. Journal of Magnetic Materials and Devices, 2007, 38(4): 51-54 doi: 10.3969/j.issn.1001-3830.2007.04.014

    Jin Baoyan, Bao Xiaoqian, Zhang Maocai, et al. Effect of surface modification on the stability and magnetorheology of magnetorheological fluids[J]. Journal of Magnetic Materials and Devices, 2007, 38(4): 51-54 doi: 10.3969/j.issn.1001-3830.2007.04.014
    [10] 唐欣, 凌虹, 胡克鳌. 磁流变液沉降稳定性研究现状与趋势[J]. 磁性材料及器件, 2004, 35(3):5-8. (Tang Xin, Ling Hong, Hu Keao. Current status and future trends of research in subsidence stability of magnetorheological fluids[J]. Journal of Magnetic Materials and Devices, 2004, 35(3): 5-8 doi: 10.3969/j.issn.1001-3830.2004.03.002

    Tang Xin, Ling Hong, Hu Keao. Current status and future trends of research in subsidence stability of magnetorheological fluids[J]. Journal of Magnetic Materials and Devices, 2004, 35(3): 5-8 doi: 10.3969/j.issn.1001-3830.2004.03.002
    [11] 胡林, 付伟, 张朝平, 等. 磁流变液沉降稳定性改进及对流变性能的影响[J]. 贵州大学学报(自然科学版), 2001, 18(3):176-181. (Hu Lin, Fu Wei, Zhang Chaoping, et al. Modification of the subsidence stability in magnetorheological fluids and influence of profiles on rheological[J]. Journal of Guizhou University (Natural Science), 2001, 18(3): 176-181

    Hu Lin, Fu Wei, Zhang Chaoping, et al. Modification of the subsidence stability in magnetorheological fluids and influence of profiles on rheological[J]. Journal of Guizhou University (Natural Science), 2001, 18(3): 176-181
    [12] 白杨, 张峰, 邓伟杰, 等. 磁流变抛光液的配制及其抛光稳定性[J]. 光学学报, 2014, 34:0416001. (Bai Yang, Zhang Feng, Deng Weijie, et al. Preparation of magnetorheological polishing fluid and its polishing stability[J]. Acta Optica Sinica, 2014, 34: 0416001 doi: 10.3788/AOS201434.0416001

    Bai Yang, Zhang Feng, Deng Weijie, et al. Preparation of magnetorheological polishing fluid and its polishing stability[J]. Acta Optica Sinica, 2014, 34: 0416001 doi: 10.3788/AOS201434.0416001
    [13] Kumar M, Singh Yadav H N, Kumar A, et al. An overview of magnetorheological polishing fluid applied in nano-finishing of components[J]. Journal of Micromanufacturing, 2021, 2021: 25165984211008173.
    [14] Ghosh G, Sidpara A, Bandyopadhyay P P. Experimental and theoretical investigation into surface roughness and residual stress in magnetorheological finishing of OFHC copper[J]. Journal of Materials Processing Technology, 2021, 288: 116899. doi: 10.1016/j.jmatprotec.2020.116899
    [15] Arora K, Singh A K. Theoretical and experimental investigation on surface roughness of straight bevel gears using a novel magnetorheological finishing process[J]. Wear, 2021, 476: 203693. doi: 10.1016/j.wear.2021.203693
    [16] Gopinath B, Sathishkumar G K, Karthik P, et al. A systematic study of the impact of additives on structural and mechanical properties of magnetorheological fluids[J]. Materials Today: Proceedings, 2021, 37: 1721-1728. doi: 10.1016/j.matpr.2020.07.246
    [17] Lu Qi, Choi K, Nam J D, et al. Magnetic polymer composite particles: design and magnetorheology[J]. Polymers, 2021, 13: 512. doi: 10.3390/polym13040512
    [18] Shen Jianyun, Qian Feng, Wu Xian, et al. Fundamental study on CNC polishing method with inner channel liquid supply[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3): 1075-1085.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  57
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 录用日期:  2022-05-13
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回