留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态磁聚焦的CT球管飞焦点研究

付伟 王严梅 吕向英 王鹏

付伟, 王严梅, 吕向英, 等. 基于动态磁聚焦的CT球管飞焦点研究[J]. 强激光与粒子束, 2022, 34: 024001. doi: 10.11884/HPLPB202234.210392
引用本文: 付伟, 王严梅, 吕向英, 等. 基于动态磁聚焦的CT球管飞焦点研究[J]. 强激光与粒子束, 2022, 34: 024001. doi: 10.11884/HPLPB202234.210392
Fu Wei, Wang Yanmei, Lü Xiangying, et al. Research of flying focal spot of the CT tube based on dynamic magnetic focusing[J]. High Power Laser and Particle Beams, 2022, 34: 024001. doi: 10.11884/HPLPB202234.210392
Citation: Fu Wei, Wang Yanmei, Lü Xiangying, et al. Research of flying focal spot of the CT tube based on dynamic magnetic focusing[J]. High Power Laser and Particle Beams, 2022, 34: 024001. doi: 10.11884/HPLPB202234.210392

基于动态磁聚焦的CT球管飞焦点研究

doi: 10.11884/HPLPB202234.210392
基金项目: 国家重点研发计划项目(2017YFC0111500)
详细信息
    作者简介:

    付 伟,ee971898508@outlook.com

  • 中图分类号: TN14

Research of flying focal spot of the CT tube based on dynamic magnetic focusing

  • 摘要: 作为CT设备的核心器件,CT球管采用动态磁聚焦技术以利于大电流输出时小焦点的实现。飞焦点技术可以多角度记录每次扫描的每个投影,提高采样率,从而大幅改善图像清晰度,提高成像质量。当CT球管为1 A大电流输出时,采用CST软件对双磁四极透镜关键参数进行模拟仿真及优化,满足焦点目标尺寸为0.2 mm×0.6 mm的同时具备飞焦点功能。
  • 图  1  静电聚焦系统结构图

    Figure  1.  Structural diagram of the electrostatic focusing system

    图  2  CT球管双磁四极透镜动态磁聚焦飞焦点扫描结构

    Figure  2.  Dynamic magnetic focusing flying focus scanning structure of double magnetic quadrupole lens CT tube

    图  3  磁四极透镜磁场分布图

    Figure  3.  Magnetic field distribution of magnetic quadrupole lens

    图  4  双磁四极透镜系统CST仿真结构

    Figure  4.  CST simulation structure of dual magnetic quadrupole lens system

    1—focusing electrode; 2—cathode; 3—anode head; 4—first stage quadrupole lens core; 5—first stage quadrupole lens coil; 6—second stage quadrupole lens core; 7—second stage quadrupole lens coil; 8—deflection coil; 9—enclosure; 10—anode target.

    图  5  最大磁场变化与xy轴方向焦斑尺寸大小关系图

    Figure  5.  Maximum magnetic field vs focal spot size in x and y axes

    图  6  四极透镜磁场沿x-y轴方向的分布

    Figure  6.  Distribution of the magnetic field of quadrupole lens along the x-y axis

    图  7  电流仿真轨迹

    Figure  7.  Current simulation trajectory

    图  8  不加轴偏转电流焦斑形貌图

    Figure  8.  Morphology of focal spot without axial deflection current

    图  9  焦斑xy轴向偏移量随xy轴向偏转电流关系

    Figure  9.  Relationship between x, y-axis of fset of focal spot and x, y-axis deflection current

    图  10  xy轴偏转电流偏转量

    Figure  10.  Add the x, y-axis deflection current deflection

    表  1  国外部分机构在动态磁聚焦飞焦点技术的应用

    Table  1.   Application of foreign institutions in dynamic magnetic focusing flying focus technology

    numberinstitutionCT tubeflying focal spot technologyimage resolution improvement
    1 Siemens[7] Straton z-Sharp technology(z-axis double sampling) each probe unit yields two alternately overlapping X-line projections without a dose increase, substantially improving the spatial resolution and imaging quality
    2 Philips iMRC precise flying focal spot (SFS,the x-axial and z-axial flying focal spot technology) double sampling rate is obtained in plane and longitudinal direction, which is equivalent to 4 times of detector, and high spatial resolution is obtained in axial position and spiral scanning
    3 Dunlee CT5000 xDFS(the x-axial flying focal spot),zDFS(the z-axial flying focal spot) improve imaging quality, provide sharp and clear images, zDFS double the number of slices, and there is no need for detectors with higher spatial resolution
    下载: 导出CSV
  • [1] 逯乐慧, 王颖, 刘艳岚. CT成像纳米探针的设计及应用[C]//中国化学会第30届学术年会摘要集-第三十八分会: 纳米生物效应与纳米药物化学. 2016: 188.

    Lu Lehui, Wang Ying, Liu Yanlan. Nanoprobe for CT imaging[C]//Summary of the 30th Annual Conference of the Chinese Chemical Society—Chapter 38: Nanobiological Effects and Nanomedicinal Chemistry. 2016: 188.
    [2] 石灵, 张富治, 王瑞海, 等. 医用CT球管国内外现状及发展趋势[J]. 真空电子技术, 2018(2):61-64,68. (Shi Ling, Zhang Fuzhi, Wang Ruihai, et al. Domestic and foreign situation and development trend of medical CT X-ray tubes[J]. Vacuum Electronics, 2018(2): 61-64,68
    [3] 余晓锷, 龚剑. CT原理与技术[M]. 北京: 科学出版社, 2014: 16

    Yu Xiao’e, Gong Jian. CT philosophy and technique[M]. Beijing: Science Press, 2014: 16
    [4] 张富治, 盛兴, 王瑞海, 等. X射线CT球管的研制进展[J]. 真空电子技术, 2016(1):7-10. (Zhang Fuzhi, Sheng Xing, Wang Ruihai, et al. Research development of the X-ray tubes for CT[J]. Vacuum Electronics, 2016(1): 7-10 doi: 10.3969/j.issn.1002-8935.2016.01.003
    [5] Braun M. Physics of X-ray tubes for CT scanners[J]. IEEE Transactions on Nuclear Science, 1979, 26(2): 2840-2844. doi: 10.1109/TNS.1979.4330546
    [6] Behling R. Modern diagnostic X-ray sources: technology manufacturing, reliability[M]. Boca Raton: CRC Press, 2015: 216.
    [7] Kachelriess M, Knaup M, Penssel C, et al. Flying focal spot (FFS) in cone-beam CT[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1238-1247. doi: 10.1109/TNS.2006.874076
    [8] Legge G J F. A history of ion microbeams[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 130(1/4): 9-19.
    [9] Gestrin G N, Kuleshov A N, Yefimov B P. Magnetic focusing system for hybrid FEL-based on quadrupole lenses[C]//2004 14th International Crimean Conference “Microwave and Telecommunication Technology”. 2004: 237-238.
    [10] 李泉凤. 电磁场数值计算与电磁铁设计[M]. 北京: 清华大学出版社, 2002: 184

    Li Quanfeng. Numerical calculation of electro-magnetic field and electromagnet design[M]. Beijing: Tsinghua University Press, 2002: 184
    [11] 陈连运. 单粒子束装置束线传输系统的研究[D]. 合肥: 合肥工业大学, 2002: 21

    Chen Lianyun. Study on beam transport of the single-ion microbeam facility[D]. Hefei: Hefei University of Technology, 2002: 21
    [12] 杜秉初, 汪健如. 电子光学[M]. 北京: 清华大学出版社, 2002: 305

    Du Bingchu, Wang Jianru. Electron optics[M]. Beijing: Tsinghua University Press, 2002: 305
    [13] Chichkine V, Winkler A, Behr K H, et al. Strong pulsed magnetic quadrupole lens[J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1): 699-702. doi: 10.1109/TASC.2002.1018497
    [14] 窦彦昕. 聚焦型高能离子微束技术的模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 29

    Dou Yanxin. Simulation research on the focused high energy ion microbeam technology[D]. Harbin: Harbin Institute of Technology, 2018: 29
    [15] 钱文枢. 大功率辐照加速器X射线转换靶研究[D]. 北京: 清华大学, 2008: 19

    Qian Wenshu. Research of the bremsstrahlung converter for high-power irradiation linacs[D]. Beijing: Tsinghua University, 2008: 19
    [16] 赵国骏, 凌宝京, 薛坤兴. 电子离子光学[M]. 北京: 国防工业出版社, 1994: 135-146

    Zhao Guojun, Ling Baojing, Xue Kunxing. Electronic ion optics[M]. Beijing: National Defense Industry Press, 1994: 135-146
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1959
  • HTML全文浏览量:  544
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-11-23
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回