留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声发射的光学元件损伤监测方法研究

洪梦君 张军伟 徐振源 李玉海

洪梦君, 张军伟, 徐振源, 等. 基于声发射的光学元件损伤监测方法研究[J]. 强激光与粒子束, 2022, 34: 081006. doi: 10.11884/HPLPB202234.220031
引用本文: 洪梦君, 张军伟, 徐振源, 等. 基于声发射的光学元件损伤监测方法研究[J]. 强激光与粒子束, 2022, 34: 081006. doi: 10.11884/HPLPB202234.220031
Hong Mengjun, Zhang Junwei, Xu Zhenyuan, et al. Optical component damage monitoring method based on acoustic emission[J]. High Power Laser and Particle Beams, 2022, 34: 081006. doi: 10.11884/HPLPB202234.220031
Citation: Hong Mengjun, Zhang Junwei, Xu Zhenyuan, et al. Optical component damage monitoring method based on acoustic emission[J]. High Power Laser and Particle Beams, 2022, 34: 081006. doi: 10.11884/HPLPB202234.220031

基于声发射的光学元件损伤监测方法研究

doi: 10.11884/HPLPB202234.220031
详细信息
    作者简介:

    洪梦君,hong.mj@qq.com

    通讯作者:

    张军伟,zhangjunwei@caep.cn

  • 中图分类号: TN247

Optical component damage monitoring method based on acoustic emission

  • 摘要: 光学元件损伤是限制激光通量水平提高的重要因素之一。为快速、准确地检测光学元件损伤是否产生,支撑光学元件循环修复策略的使用,研究并提出了基于声发射技术的光学元件损伤检测方法,通过研究光学元件损伤产生的声发射信号特征,判断光学元件是否发生损伤,使用一种基于二次相关和相关峰精确插值(FICP)的时延估计算法,通过仿真验证了该算法的可行性,结合时差定位原理建立了损伤位置求解方法,并通过实验进行了验证。研究结果表明:该方法能从监测信号中快速地获得损伤的位置估计,其平均定位误差为8.61 mm,计算时间为0.143 s/次,对大口径光学元件的损伤在线监测具有应用潜力。
  • 图  1  声发射检测方法

    Figure  1.  Acoustic emission testing method

    图  2  改进算法流程

    Figure  2.  Improved algorithm process

    图  3  三传感器阵列的AE源平面定位

    Figure  3.  AE source plane localization of three sensor arrays

    图  4  两种算法的RSME和时延估计绝对误差比较

    Figure  4.  Comparison of RSME and absolute error of TDE between the two algorithms

    图  5  系统设计思路

    Figure  5.  Design of system

    图  6  传感器布置

    Figure  6.  Sensor placement

    图  7  实验光路设计

    Figure  7.  Design of experimental light path

    图  8  AE信号幅值随激光能量密度的变化

    Figure  8.  Variation of AE signal amplitude with laser energy density

    图  9  损伤点的AE信号图和形貌图

    Figure  9.  AE signal and morphology of damage point

    图  10  玻璃样品的传感器布置和测试点位置

    Figure  10.  Sensor layout and test point location of glass samples

    图  11  计算结果

    Figure  11.  Calculation results

    表  1  不同判据对熔石英损伤判定情况

    Table  1.   Different criteria for judging fused silica damage

    criterianumber of damage points
    AE signal amplitude judge13
    microscopic observation14 (damage size < 50 μm
    at one of the test points)
    下载: 导出CSV
  • [1] 魏富鹏. 大口径光学元件弱特征损伤智能检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    Wei Fupeng. Research on intelligent inspection method of weak feature damage in large aperture final optics[D]. Harbin: Harbin Institute of Technology, 2019
    [2] Kasai N, Utatsu K, Park S, et al. Correlation between corrosion rate and AE signal in an acidic environment for mild steel[J]. Corrosion Science, 2009, 51(8): 1679-1684. doi: 10.1016/j.corsci.2009.04.021
    [3] 王宗炼, 任会兰, 宁建国. 基于小波变换降噪的声发射源定位方法[J]. 振动与冲击, 2018, 37(4):226-232,248. (Wang Zonglian, Ren Huilan, Ning Jianguo. Acoustic emission source location based on wavelet transform de-noising[J]. Journal of Vibration and Shock, 2018, 37(4): 226-232,248

    Wang Zonglan, Ren Huilan, Ning Jianguo. Acoustic emission source location based on wavelet transform de-noising[J]. Journal of Vibration and Shock, 2018, 37(4): 226-232, 248
    [4] Kaiser W. Recent progress in stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 1968, 4: 381.
    [5] Egle D M, Tatro C A. Analysis of acoustic-emission strain waves[J]. The Journal of the Acoustical Society of America, 1967, 41(2): 321-327. doi: 10.1121/1.1910341
    [6] Van Hecke B, He D, Qu Yongzhi. On the use of spectral averaging of acoustic emission signals for bearing fault diagnostics[J]. Journal of Vibration and Acoustics, 2014, 136: 061009. doi: 10.1115/1.4028322
    [7] Jiao Jingpin, He Cunfu, Wu Bin, et al. A new acoustic emission source location technique based on wavelet transform and mode analysis[J]. Frontiers of Mechanical Engineering in China, 2006, 1(3): 341-345. doi: 10.1007/s11465-006-0006-4
    [8] 苏俊宏, 王坤坤, 梁海峰. 激光薄膜损伤的声频判别方法[J]. 光学与光电技术, 2014, 12(1):27-31. (Su Junhong, Wang Kunkun, Liang Haifeng. Acoustic frequency method of detection of optical thin films damage[J]. Optics & Optoelectronic Technology, 2014, 12(1): 27-31 doi: 10.3969/j.issn.1672-3392.2014.01.006

    Su Junhong, Wang Kunkun, Liang Haifeng. Acoustic frequency method of detection of optical thin films damage[J]. Optics & Optoelectronic Technology, 2014, 12(1): 27-31 doi: 10.3969/j.issn.1672-3392.2014.01.006
    [9] 易木俣. 基于光声法的光学元件损伤特性研究[D]. 苏州: 苏州大学, 2017

    Yi Muyu. Study on laser-induced damage phenomenon in optical components with photo-acoustic method[D]. Suzhou: Soochow University, 2017
    [10] 陈珂骏. 激光诱导熔石英损伤的光声频谱分析研究[D]. 苏州: 苏州大学, 2019

    Chen Kejun. Laser-induced damage on fused silica with photo-acoustic spectrum analysis[D]. Suzhou: Soochow University, 2019
    [11] 王牛俊, 陈莉. 声发射检测技术的原理及应用[J]. 广西轻工业, 2010, 26(3):49-50. (Wang Niujun, Chen Li. The theory & application of acoustic emission testing technique[J]. Guangxi Journal of Light Industry, 2010, 26(3): 49-50 doi: 10.3969/j.issn.1003-2673.2010.03.025

    Wang Niujun, Chen Li. The theory & application of acoustic emission testing technique[J]. Guangxi Journal of Light Industry, 2010, 26(3): 49-50 doi: 10.3969/j.issn.1003-2673.2010.03.025
    [12] 俞一鸣, 姚远, 程学虎. TDOA定位技术和实际应用简介[J]. 中国无线电, 2013(11):57-58,70. (Yu Yiming, Yao Yuan, Cheng Xuehu. Introduction to TDOA positioning technology and its practical application[J]. China Radio, 2013(11): 57-58,70 doi: 10.3969/j.issn.1672-7797.2013.11.034

    Yu Yiming Yao Yuan, Cheng Xuehu. Introduction to TDOA positioning technology and its practical application[J]. China Radio, 2013(11): 57-58, 70 doi: 10.3969/j.issn.1672-7797.2013.11.034
    [13] 茅惠达, 张玲华. 声源定位中广义互相关时延估计算法的研究[J]. 计算机工程与应用, 2016, 55(22):138-142. (Mao Huida, Zhang Linghua. Research on generalized cross correlation algorithm for time delay estimation in sound source localization[J]. Computer Engineering and Applications, 2016, 55(22): 138-142 doi: 10.3778/j.issn.1002-8331.1501-0090

    Mao Huida, Zhang Linghua. Research on generalized cross correlation algorithm for time delay estimation in sound source localization[J]. Computer Engineering and Applications, 2016, 55(22): 138-142 doi: 10.3778/j.issn.1002-8331.1501-0090
    [14] 唐娟, 行鸿彦. 基于二次相关的时延估计方法[J]. 计算机工程, 2007, 33(21):265-267. (Tang Juan, Xing Hongyan. Time delay estimation based on second correlation[J]. Computer Engineering, 2007, 33(21): 265-267 doi: 10.3969/j.issn.1000-3428.2007.21.094

    Tang Juan, Xing Hongyan. Time delay estimation based on second correlation[J]. Computer Engineering, 2007, 33(21): 265-267 doi: 10.3969/j.issn.1000-3428.2007.21.094
    [15] 韩洁, 吴长奇. 相关峰插值的二次相关锐化时延估计方法[J]. 信号处理, 2014, 30(10):1241-1244. (Han Jie, Wu Changqi. Second correlated and sharpen the correlation peak interpolation time delay estimation method[J]. Journal of Signal Processing, 2014, 30(10): 1241-1244 doi: 10.3969/j.issn.1003-0530.2014.10.017

    Han Jie, Wu Changqi. Second correlated and sharpen the correlation peak interpolation time delay estimation method[J]. Journal of Signal Processing, 2014, 30(10): 1241-1244 doi: 10.3969/j.issn.1003-0530.2014.10.017
    [16] 雍龙泉. 非线性方程牛顿迭代法研究进展[J]. 数学的实践与认识, 2021, 51(15):240-249. (Yong Longquan. Advances in Newton’s iterative methods for nonlinear equation[J]. Mathematics in Practice and Theory, 2021, 51(15): 240-249

    Yong Longquan. Advances in newton’s iterative methods for nonlinear equation[J]. Mathematics in Practice and Theory, 2021, 51(15): 240-249
    [17] 金钟山, 刘时风, 耿荣生, 等. 曲面和三维结构的声发射源定位方法[J]. 无损检测, 2002, 24(5):205-211. (Jin Zhongguo, Liu Shifeng, Geng Rongsheng, et al. Location of acoustic emission source on curved surfaces and three-dimension structures[J]. Nondestructive Testing, 2002, 24(5): 205-211 doi: 10.3969/j.issn.1000-6656.2002.05.008

    Jin Zhongguo, Liu Shifeng, Geng Rongsheng, et al. Location of acoustic emission source on curved surfaces and three-dimension structures[J]. Nondestructive Testing, 2002, 24(5): 205-211 doi: 10.3969/j.issn.1000-6656.2002.05.008
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  80
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-05-12
  • 修回日期:  2022-04-24
  • 网络出版日期:  2022-05-17
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回