留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于光源的射频超导加速技术

刘克新 郝建奎 全胜文 黄森林

刘克新, 郝建奎, 全胜文, 等. 应用于光源的射频超导加速技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220075
引用本文: 刘克新, 郝建奎, 全胜文, 等. 应用于光源的射频超导加速技术[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220075
Liu Kexin, Hao Jiankui, Quan Shengwen, et al. SRF accelerating technology applied in light sources[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220075
Citation: Liu Kexin, Hao Jiankui, Quan Shengwen, et al. SRF accelerating technology applied in light sources[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220075

应用于光源的射频超导加速技术

doi: 10.11884/HPLPB202234.220075
基金项目: 国家重点研发计划项目(2016YFA0401904)
详细信息
    作者简介:

    刘克新,kxliu@pku.edu.cn

  • 中图分类号: TL503

SRF accelerating technology applied in light sources

  • 摘要: 射频超导加速器采用在液氦温度下工作的超导加速腔,可运行在长宏脉冲或连续波模式,同时具有较大的束流孔径,可有效减小束腔相互作用。经过半个多世纪的发展,射频超导技术已经日趋成熟,广泛应用于各种光源,并将发挥越来越重要的作用。简要介绍射频超导基本原理、应用于光源的椭球型电子超导加速腔的研制工艺、超导加速模组构成和应用于不同类型光源的超导加速腔的主要特点。
  • 图  1  TESLA型9-cell超导腔腔型设计和实物(单位:mm)

    Figure  1.  Design and photo of TESLA 9-cell superconducting cavity (Unit: mm)

    图  2  宁夏东方钽业公司生产的大晶粒铌材

    Figure  2.  Large grain niobium material produced by Ningxia OTIC

    图  3  经氮掺杂处理后超导腔出现“anti-Q-slope”现象[31]

    Figure  3.  Anti-Q-slope of superconducting cavities after N-doping[31]

    图  4  北京大学单-cell超导腔氮掺杂处理测试结果

    Figure  4.  Vertical test results of single cell cavities after N-doping at Peking University

    图  5  中科院高能物理研究所超导腔中温处理测试结果

    Figure  5.  Vertical test result of superconducting cavities after mid-T treatment at IHEP

    图  6  北京大学垂测装置

    Figure  6.  Vertical test system of Peking University

    图  7  包含两只9-cell超导腔的加速模组示意图

    Figure  7.  Layout of an accelerating cryomodule including two 9-cell superconducting cavities

  • [1] Schwettman H A. Proceedings of 5th International Conference of High Energy Accelerators (Frascati, 1965) [C].
    [2] Turneaure J P, Viet N T. Superconducting Nb TM010 mode electron-beam welded cavities[J]. Applied Physics Letters, 1970, 16(9): 333-335. doi: 10.1063/1.1653215
    [3] Klein U, Proch D. Proceedings of the Conference of Future Possibilities for Electron Accelerators [C]. Charlottesville, 1979: N1-17.
    [4] Shemelin V D. Low loss and high gradient SC cavities with different wall slope angles[C]//2007 IEEE Particle Accelerator Conference. 2007: 2352-2354.
    [5] Reschke D, Aderhold S, Möller A, et al. Results on large grain nine-cell cavities at DESY: Gradients up to 45 MV/m after electropolishing[C]//Proceedings of SRF2011. 2011: 490-494.
    [6] Geng R L. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab[C]//Proceedings of SRF2009. 2009: 213-217.
    [7] 郝建奎, 全胜文, 林林, 等. 国际直线对撞机(ILC)高梯度射频超导加速腔研制[J]. 中国科学:物理学 力学 天文学, 2013, 43(10):1321-1326

    Hao Jiankui, Quan Shengwen, Lin Lin, et al. The first high gradient 9-cell superconducting cavity reached ILC requirements in China[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(10): 1321-1326
    [8] Kostin D, Gössel A, Lange R, et al. Testing the FLASH superconducting accelerating modules[C]//Proceedings of the 13th International Workshop on RF Superconductivity SRF2007. 2007: 442-445.
    [9] Reschke D, Decking W, Walker N J, et al. The commissioning of the European-XFEL linac and its performance[C]//Proceedings of the 18th International Conference on RF Superconductivity SRF2017. 2017: 1-5.
    [10] Hao Jiankui, Quan Shengwen, Lin Lin, et al. Fabrication, treatment and test of large grain cavities[C]//Proceedings of the 18th International Conference on RF Superconductivity SRF2007. 2017: 700-702.
    [11] Singer W. Development of large grain cavities at DESY[C]//TTC2011, Beijing, 2011.
    [12] Grassellino A, Romanenko A, Sergatskov D, et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures[J]. Superconductor Science and Technology, 2013, 26: 102001. doi: 10.1088/0953-2048/26/10/102001
    [13] Grassellino A, Romanenko A, Trenikhina Y, et al. Unprecedented quality factors at accelerating gradients up to 45 MVm−1 in niobium superconducting resonators via low temperature nitrogen infusion[J]. Superconductor Science and Technology, 2017, 30: 094004. doi: 10.1088/1361-6668/aa7afe
    [14] Posen S. Update on insitu mid-T bake[R]. TTC2020, CERN, 2020.
    [15] Chen Shu, Hao Jiankui, Lin Lin, et al. Successful nitrogen doping of 1.3GHz single cell superconducting radio-frequency cavities[J]. Chinese Physics Letters, 2018, 35: 037401. doi: 10.1088/0256-307X/35/3/037401
    [16] Zhou Quan, He Feisi, Pan Weimin, et al. Medium-temperature baking of 1.3 GHz superconducting radio frequency single-cell cavity[J]. Radiation Detection Technology and Methods, 2020, 4(4): 507-512. doi: 10.1007/s41605-020-00208-7
    [17] Chen J F, Hou H T, Liu Y F, et al. N-doping studies with single-cell cavities for the SHINE project[C]//Proceedings of the 19th International Conference on RF Superconductivity SRF2019. 2019: 102-105.
    [18] Galayda J N. LCLS-II final design report[R]. LCLSII-1.1-DR-0251-R0, 2015.
    [19] Zhu Z Y, Zhao Z T, Wang D, et al. SCLF: an 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai[C]//Proceedings of the 38th International Free Electron Laser Conference(FEL2017). 2017: 182-184.
    [20] Cavallari G, Chiaveri E, Tückmantel J, et al. Acceptance tests of superconducting cavities and modules for LEP from industry[C]//Proceedings of the 4th European Particle Accelerator Conference EPAC94. 1994: 2042-2044.
    [21] Saito K, Kojima Y, Furuya T, et al. R&D of superconducting cavities at KEK[C]//Proceedings of the 4th Workshop on RF Superconductivity. 1989: 635-694.
    [22] Belomestnykh S, Barnes P, Chojnacki E, et al. Running CESR at high luminosity and beam current with superconducting RF system[C]//Proceedings of EPAC 2000. 2000: 2025-2027.
    [23] Furuya T, Mitsunobu S, Tajima T, et al. Thermal cycle tests of KEK 500MHz cavities[C]//Proceedings of the 5th Workshop on RF Superconductivity. 1991: 684-693.
    [24] Wang Guangwei, Dai J P, Dai X W, et al. Fabrication and test of 500MHz Nb cavity for BEPCII[C]//Proceedings of the 15th International Conference on RF Superconductivity. 2011: 512-514.
    [25] Liu J F, Hou H T, Mao D Q, et al. Development of superconducting radio frequency cavities at SINAP[C]//Proceedings of IPAC2012. 2012: 2248-2250.
    [26] Zhang Pei, Zhang Xinying, Li Zhongquan, et al. Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta=1 cavity[J]. Review of Scientific Instruments, 2019, 90: 084705. doi: 10.1063/1.5119093
    [27] Gruner S M, Bilderback D, Bazarov I, et al. Energy recovery linacs as synchrotron radiation sources (invited)[J]. Review of Scientific Instruments, 2002, 73(3): 1402-1406. doi: 10.1063/1.1420754
    [28] Poole M W, Clarke J A, Seddon E A. 4GLS: an advanced multi-source low energy photon facility for the UK[C]//Proceedings of EPAC2002. 2002: 733-735.
    [29] Aune B, Bandelmann R, Bloess D, et al. Superconducting TESLA cavities[J]. Physical Review Accelerators and Beams, 2000, 3: 092001. doi: 10.1103/PhysRevSTAB.3.092001
    [30] Padamsee H, Knobloch J, Hays T. RF superconductivity for accelerators[M]. New York: John Wiley & Sons, 1998: 59-62.
    [31] Crawford A, Eichhorn R, Furuta F, et al. The joint high Q0 R&D program for LCLS-II[C]//Proceedings of the 5th International Particle Accelerator Conference IPAC2014. 2014: 2627-2630.
    [32] He Feisi. Experimental study of simplified mid-T furnace baking at IHEP (15+5)[C/OL]//TTC 2021 Virtual Meeting. (2021-01-19). https://indico.desy.de/event/27572/contributions/94299/.
    [33] Büchner A, Gabriel F, Grosse E, et al. The ELBE-project at Dresden-Rossendorf[C]//Proceedings of EPAC2000. 2000: 732-734.
  • 加载中
图(7)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  50
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 修回日期:  2022-06-21
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回