留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百瓦级近衍射极限VCSEL泵浦激光器

李雪鹏 杨晶 筵兴伟 陈中正 袁磊 杨俊波 王小军 彭钦军 许祖彦

李雪鹏, 杨晶, 筵兴伟, 等. 百瓦级近衍射极限VCSEL泵浦激光器[J]. 强激光与粒子束, 2022, 34: 081004. doi: 10.11884/HPLPB202234.220078
引用本文: 李雪鹏, 杨晶, 筵兴伟, 等. 百瓦级近衍射极限VCSEL泵浦激光器[J]. 强激光与粒子束, 2022, 34: 081004. doi: 10.11884/HPLPB202234.220078
Li Xuepeng, Yang Jing, Yan Xingwei, et al. Hundred-watt level VCSEL-pumped laser with near diffraction limit beam quality[J]. High Power Laser and Particle Beams, 2022, 34: 081004. doi: 10.11884/HPLPB202234.220078
Citation: Li Xuepeng, Yang Jing, Yan Xingwei, et al. Hundred-watt level VCSEL-pumped laser with near diffraction limit beam quality[J]. High Power Laser and Particle Beams, 2022, 34: 081004. doi: 10.11884/HPLPB202234.220078

百瓦级近衍射极限VCSEL泵浦激光器

doi: 10.11884/HPLPB202234.220078
详细信息
    作者简介:

    李雪鹏,lixuepeng16@mails.ucas.ac.cn

    通讯作者:

    杨 晶,yangjing@mail.ipc.ac.cn

    王小军,wangxj@mail.ipc.ac.cn

  • 中图分类号: TN248.1

Hundred-watt level VCSEL-pumped laser with near diffraction limit beam quality

  • 摘要: 报道了高功率、高光束质量的垂直腔面发射半导体激光器(VCSEL)侧泵的Nd:YAG激光振荡器。从VCSEL泵浦源的主动冷却的热沉结构出发,设计了5个227 W的VCSEL线阵,并且通过优化侧面泵浦大口径激光棒的结构,研制成了具备480 W输出能力的棒状激光模块,相应的光-光效率为49.7%。在此基础上,设计了一种高功率、高光束质量的VCSEL侧面泵浦棒状Nd:YAG激光振荡器。腔内插入望远镜光学元件,并通过优化各光学元件的参数使其工作在热近非稳区域,以达到增大基横模体积和抑制高阶横模目的。最终,获得114 W的输出功率,相应的平均光束质量因子M2为1.42。由于VCSEL具备优秀的波长-温度稳定性,这种高功率、高光束质量的VCSEL泵浦的固体激光器在工业、空间等领域,具有极为广阔的应用前景。
  • 图  1  1×15 VCSEL线阵

    Figure  1.  1×15 VCSEL linear array

    图  2  VCSEL侧面泵浦Nd:YAG棒状激光模块的剖面图。插图:总泵浦功率为1135 W时ϕ8 mm激光棒吸收泵浦功率的分布截面图

    Figure  2.  Pumping configuration of the VCSEL side-pumped rod Nd:YAG laser module. Inset: the simulation of the absorbed pump power distribution in the middle cross section of the ϕ8 mm rod at total pump power of 1135 W

    图  3  VCSEL侧面泵浦棒状Nd:YAG激光模块的输出功率和光-光转换效率随泵浦功率的变化关系图

    Figure  3.  Output power and optical-to-optical conversion efficiency of the VCSEL-side-pumped rod Nd:YAG laser module versus the pump power under CW operation

    图  4  带有望远镜光学元件的VCSEL侧面泵浦棒状Nd:YAG激光振荡器的实验装置图

    Figure  4.  Schematic diagram of the VCSEL side-pumped rod Nd:YAG laser oscillator with telescopic resonator

    图  5  计算的基横模光斑半径随热焦距的变化曲线

    Figure  5.  Fundamental laser mode radius versus the thermal focal length

    图  6  输出功率随泵浦功率的变化曲线

    Figure  6.  Output power as a function of the pump power

    图  7  最大输出功率下的VCSEL侧面泵浦棒状激光器的光束质量测量值。插图:光束的二维空间强度分布图

    Figure  7.  Measured beam quality factors at the maximum output power. Inset: beam two-dimensional spatial profile

    图  8  200 s内的最大的输出功率稳定性的测试曲线。插图:最大的输出功率随冷却液温度的变化曲线

    Figure  8.  Power-stability test at the highest output over 200 s. Inset: output power versus the coolant temperature

  • [1] 马骁宇, 张娜玲, 仲莉, 等. 高功率半导体激光泵浦源研究进展[J]. 强激光与粒子束, 2020, 32:121013. (Ma Xiaoyu, Zhang Naling, Zhong Li, et al. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32: 121013

    Ma Xiaoyu, Zhang Naling, Zhong Li, et al. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32: 121013
    [2] 刘芳华, 龚鑫, 张雅楠, 等. 808 nm垂直腔面发射激光器阵列抽运的全固态激光器研究进展[J]. 激光与光电子学进展, 2019, 56:120001. (Liu Fanghua, Gong Xin, Zhang Yanan, et al. Research progress on 808 nm VCSEL-array-pumped solid-state lasers[J]. Laser & Optoelectronics Progress, 2019, 56: 120001

    Liu Fanghua, Gong Xin, Zhang Yanan, et al. Research progress on 808 nm VCSEL-array-pumped solid-state lasers[J]. Laser & Optoelectronics Progress, 2019, 56: 120001
    [3] Seurin J F, Zhou Delai, Xu Guoyang, et al. High-efficiency VCSEL arrays for illumination and sensing in consumer applications[C]//Proceedings of SPIE 9766, Vertical-Cavity Surface-Emitting Lasers XX. 2016: 97660D.
    [4] Seurin J, Xu Guoyang, Guo Baiming, et al. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications[C]//Proceedings of SPIE 7952, Vertical-Cavity Surface-Emitting Lasers XV. 2011: 79520G.
    [5] Zhou Delai, Seurin J F, Xu Guoyang, et al. Progress on high-power 808nm VCSELs and applications[C]//Proceedings of SPIE 10122, Vertical-Cavity Surface-Emitting Lasers XXI. 2017: 1012206.
    [6] Moser P, Hofmann W, Wolf P, et al. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects[J]. Applied Physics Letters, 2011, 98: 231106. doi: 10.1063/1.3597799
    [7] Seurin J F, Xu Guoyang, Khalfin V, et al. Progress in high-power high-efficiency VCSEL arrays[C]//Proceedings of SPIE 7229, Vertical-Cavity Surface-Emitting Lasers XIII. 2009: 722903.
    [8] Goldberg L, Mcintosh C, Cole B. VCSEL end-pumped passively Q-switched Nd: YAG laser with adjustable pulse energy[J]. Optics Express, 2011, 19(5): 4261-4267. doi: 10.1364/OE.19.004261
    [9] Van Leeuwen R, Xu Bing, Wang Qing, et al. Passively Q-switched VCSEL-pumped Nd: YAG laser with 47 mJ pulse energy[C]//Proceedings of SPIE 10082, Solid State Lasers XXVI: Technology and Devices. 2017: 100820L.
    [10] 陈思露, 张鑫, 蒋静, 等. VCSEL侧面抽运的全固态激光器[J]. 中国激光, 2018, 45:1001001. (Chen Silu, Zhang Xin, Jiang Jing, et al. VCSEL side-pumped all solid-state lasers[J]. Chinese Journal of Lasers, 2018, 45: 1001001 doi: 10.3788/CJL201845.1001001

    Chen Silu, Zhang Xin, Jiang Jing, et al. VCSEL side-pumped all solid-state lasers[J]. Chinese Journal of Lasers, 2018, 45: 1001001 doi: 10.3788/CJL201845.1001001
    [11] Li Xuepeng, Zhang Xudong, Yang Jing, et al. Wavelength-stable 1.1-kW diode laser array cooled by liquid metal[J]. IEEE Photonics Technology Letters, 2020, 32(7): 434-437. doi: 10.1109/LPT.2020.2976628
    [12] Di Pengcheng, Li Xuepeng, Yang Jing, et al. High-power VCSEL-pumped slab laser with temperature fluctuation adaptability[J]. IEEE Photonics Technology Letters, 2021, 33(8): 395-398. doi: 10.1109/LPT.2021.3065510
    [13] Wang Chao, Wei Hui, Jiang Youen, et al. VCSEL-pumped Nd: YAG laser with 95 W average power and user-selectable nanosecond pulses[J]. Chinese Optics Letters, 2016, 14: 121402. doi: 10.3788/COL201614.121402
    [14] Van Leeuwen R, Xiong Yihan, Seurin J F, et al. High-power vertical-cavity surface-emitting lasers for diode pumped solid-state lasers[C]//Proceedings of SPIE 8381, Laser Technology for Defense and Security VIII. 2012: 83810I.
    [15] Zhang Xudong, Li Xuepeng, Zhou Yixin, et al. Vascularized liquid metal cooling for thermal management of kW high power laser diode array[J]. Applied Thermal Engineering, 2019, 162: 114212. doi: 10.1016/j.applthermaleng.2019.114212
    [16] 邸鹏程. 新型波前探测及VCSEL泵浦板条激光技术研究[D]. 北京: 中国科学院大学, 2021: 86-90

    Di Pengcheng. Researches on novel wavefront detection and VCSEL-pumped slab laser technology[D]. Beijing: University of Chinese Academy of Sciences, 2021: 86-90
    [17] Furuta K, Kojima T, Fujikawa S, et al. Diode-pumped 1 kW Q-switched Nd: YAG rod laser with high peak power and high beam quality[J]. Applied Optics, 2005, 44(19): 4119-4122. doi: 10.1364/AO.44.004119
    [18] Kozeki T, Sakashita M, Miura T, et al. Development of cw-diode pumped amplifier for over 1-kW-average-power solid-state laser system[C]//Proceedings of the Conference Lasers and Electro-Optics. 2005: 162-164.
    [19] 肖红, 赵天卓, 樊仲维, 等. 大口径轴向非均匀Nd: YAG晶体抽运设计[J]. 中国激光, 2015, 42:0602002. (Xiao Hong, Zhao Tianzhuo, Fan Zhongwei, et al. Pump design of large-diameter axial non-uniform Nd: YAG crystal[J]. Chinese Journal of Lasers, 2015, 42: 0602002 doi: 10.3788/CJL201542.0602002

    Xiao Hong, Zhao Tianzhuo, Fan Zhongwei, et al. Pump design of large-diameter axial non-uniform Nd: YAG crystal[J]. Chinese Journal of Lasers, 2015, 42: 0602002 doi: 10.3788/CJL201542.0602002
    [20] Hanna D C, Sawyers C G, Yuratich M A. Telescopic resonators for large-volume TEM00-mode operation[J]. Optical and Quantum Electronics, 1981, 13(6): 493-507. doi: 10.1007/BF00668347
    [21] Feng Yan, Bi Yong, Xu Zuyan, et al. Thermally near-unstable cavity design for solid state lasers[C]//Proceedings of SPIE 4969, Laser Resonators and Beam Control VI. 2003: 227-232.
    [22] Koechner W. Solid-state laser engineering[M]. 6th ed. New York: Springer, 2006: 102-127.
  • 加载中
图(8)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  81
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-05-19
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回