留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能同步辐射光源

焦毅 潘卫民

焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束, 2022, 34: 104002. doi: 10.11884/HPLPB202234.220080
引用本文: 焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束, 2022, 34: 104002. doi: 10.11884/HPLPB202234.220080
Jiao Yi, Pan Weimin. High Energy Photon Source[J]. High Power Laser and Particle Beams, 2022, 34: 104002. doi: 10.11884/HPLPB202234.220080
Citation: Jiao Yi, Pan Weimin. High Energy Photon Source[J]. High Power Laser and Particle Beams, 2022, 34: 104002. doi: 10.11884/HPLPB202234.220080

高能同步辐射光源

doi: 10.11884/HPLPB202234.220080
基金项目: 国家自然科学基金项目(11922512)
详细信息
    作者简介:

    焦 毅,jiaoyi@ihep.ac.cn

    通讯作者:

    潘卫民,panwm@ihep.ac.cn

  • 中图分类号: TL54+4

High Energy Photon Source

  • 摘要: 基于多弯铁消色散结构的超低发射度储存环光源是新一代同步辐射光源发展的一个重要方向。作为国内第一台第四代同步辐射光源,高能同步辐射光源已经完成物理及工程设计,并于2019年启动建设。高能同步辐射光源电子能量6 GeV,流强200 mA,水平自然发射度低于60 pm∙rad,可提供能量达300 keV的X射线,在典型硬X射线波段的同步辐射亮度达1×1022 phs·s−1·mm−2·mrad−2·(0.1%bw)−1,可为材料科学、化学工程、能源环境、生物医学、航空航天、能源环境等众多基础和工程科学研究领域提供先进的实验平台。本文将介绍高能同步辐射光源项目的整体方案及物理设计。
  • 图  1  HEPS光源各部分组成示意图

    Figure  1.  Schematic view of the HEPS project

    图  2  HEPS储存环单个周期的线性束流光学参数

    Figure  2.  Optical functions of one super period of the HEPS storage ring

    图  3  流强为200 mA时13条插入件束线的同步光亮度

    Figure  3.  Brightness of all IDs for 13 beam lines at 200 mA

    图  4  储存环在轴置换注入示意图

    Figure  4.  Schematic view of the on-axis swap-out injection into storage ring

    图  5  不同条件下的储存环动力学孔径

    Figure  5.  Dynamic aperture of the storage ring with different conditions

    图  6  快轨道反馈系统的有效带宽随系统延时的变化关系

    Figure  6.  Effective bandwidth of the fast obit feedback versus total system delay

    表  1  HEPS储存环主要参数

    Table  1.   Main parameters of the HEPS Storage Ring

    parametervalue
    beam energy/GeV6
    beam current/mA200
    circumference/m1360.4
    natural emittance/(pm·rad)34.8
    tune (H, V)115.15, 104.29
    natural chromaticity (H, V)−209, −233
    momentum compaction factor1.83×10−5
    energy loss per turn W/O ID/MeV2.64
    下载: 导出CSV
  • [1] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
    [2] Pellegrini C, Marinelli A, Reiche S. The physics of X-ray free-electron lasers[J]. Reviews of Modern Physics, 2016, 88: 015006. doi: 10.1103/RevModPhys.88.015006
    [3] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4] 赵瑀, 李志平, 刘伟航, 等. 衍射极限储存环光源相关物理问题[J]. 科学通报, 2020, 65(24):2587-2600 doi: 10.1360/TB-2020-0165

    Zhao Yu, Li Zhiping, Liu Weihang, et al. Physics issues of the diffraction-limited storage ring light source[J]. Chinese Science Bulletin, 2020, 65(24): 2587-2600 doi: 10.1360/TB-2020-0165
    [5] Bilderback D H, Brock J D, Dale D S, et al. Energy recovery linac (ERL) coherent hard X-ray sources[J]. New Journal of Physics, 2010, 12: 035011. doi: 10.1088/1367-2630/12/3/035011
    [6] Martensson N, Eriksson M. The saga of MAX IV, the first multi-bend achromat synchrotron light source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 97-104.
    [7] Yin Lixin, Tai Renzhong, Wang Dong, et al. Progress and future of Shanghai Synchrotron Radiation Facility[J]. Journal of the Vacuum Society of Japan, 2016, 59(8): 198-204. doi: 10.3131/jvsj2.59.198
    [8] Tao Ye. Groundbreaking ceremony at the high energy photon source in Beijing[J]. Synchrotron Radiation News, 2019, 32: 40. doi: 10.1080/08940886.2019.1654833
    [9] Jiao Yi, Xu Gang, Peng Yuemei, et al. Evolution of the lattice design for the High Energy Photon Source[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018.
    [10] Project proposal of the BAPS[R]. 2012.
    [11] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
    [12] Institute of High Energy Physics, HEPS preliminary design report[R]. 2018.
    [13] Jiao Yi. Latest physics design of the HEPS accelerator[J]. Radiation Detection Technology and Methods, 2020, 4: 399. doi: 10.1007/s41605-020-00212-x
    [14] Jiao Yi, Chen Fusan, He Ping, et al. Modification and optimization of the storage ring lattice of the High Energy Photon Source[J]. Radiation Detection Technology and Methods, 2020, 4(4): 415-424. doi: 10.1007/s41605-020-00189-7
    [15] Farvacque L, Carmignani N, Chavanne J, et al. A low-emittance lattice for the E. S. R. F. [C]//Proceedings of the 4th International Particle Accelerator Conference. Shanghai, 2013: 79-81.
    [16] Jiao Yi, Cai Yunhai, Chao A W. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance[J]. Physical Review Accelerators and Beams, 2011, 14: 054002. doi: 10.1103/PhysRevSTAB.14.054002
    [17] Jiao Yi, Li Xiaoyu, Xu Gang. Performance comparison of different ultralow emittance unit cells[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018.
    [18] Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [19] Jiao Yi, Li Ming, Li Xiaoyu. Brightness dependence investigation and optimizaiton for the HEPS[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018.
    [20] Liuzzo S M, Carmignani N, Chavanne J, et al. Optics adaptations for bending magnet beam lines at ESRF: short bend, 2-pole wiggler, 3-pole wiggler[C]//Proceedings of the 8th International Particle Accelerator Conference. Copenhagen, Denmark, 2017.
    [21] Jiao Yi, Cui Xiaohao, Duan Zhe, et al. Beam dynamics study in the HEPS storage ring[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia, 2019.
    [22] Li Xiaoyu, Jiao Yi, Lu Huihua, et al. Status of HEPS insertion devices design[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021.
    [23] Ji Fuhao, Chang Rui, Zhou Qiaogen, et al. Design and performance of the APPLE-Knot undulator[J]. Journal of Synchrotron Radiation, 2015, 22(4): 901-907. doi: 10.1107/S1600577515006062
    [24] Yang Yanwei, Li Xiaoyu, Lu Huihua. A practical design and field errors analysis of a merged APPLE–Knot undulator for High Energy Photon Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1011: 165579. doi: 10.1016/j.nima.2021.165579
    [25] 李啸宇, 田赛克. 新版ID模型对储存环V3设计方案的托歇克寿命影响分析[R]. HEPS-AC-AP-TN-2020-033-V0, 2020

    Li Xiaoyu, Tian Saike. Analysis of the influence of new ID model on Touschek life of storage ring V3 design[R]. HEPS-AC-AP-TN-2020-033-V0, 2020
    [26] Emery L, Borland M. Possible long-term improvements to the Advanced Photon Source[C]//Proceedings of the 2003 Particle Accelerator Conference. Portland, USA, 2003: 256-258.
    [27] Chen Jinhui, Shi Hua, Wang Lei, et al. Strip-line kicker and fast pulser R&D for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 920: 1-6.
    [28] Wang Lei, Chen Jinhui, Shi Hua, et al. A novel 5-cell strip-line kicker prototype for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 992: 165040. doi: 10.1016/j.nima.2021.165040
    [29] Duan Zhe, Chen Jinhui, Guo Yuanyuan, et al. The swap-out injection scheme for the High Energy Photon Source[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018.
    [30] Xu Haisheng, Peng Yuemei, Wang Na. Studies of transverse single-bunch instabilities in booster synchrotrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 313-319.
    [31] Meng Cai, He Xiang, Jiao Yi, et al. Physics design of the HEPS LINAC[J]. Radiation Detection Technology and Methods, 2020, 4(4): 497-506. doi: 10.1007/s41605-020-00205-w
    [32] Peng Yuemei, Duan Zhe, Guo Yuanyuan, et al. Design of the HEPS booster lattice[J]. Radiation Detection Technology and Methods, 2020, 4(4): 425-432. doi: 10.1007/s41605-020-00202-z
    [33] Guo Yuanyuan, Wei Yuanyuan, Peng Yuemei, et al. The transfer line design for the HEPS project[J]. Radiation Detection Technology and Methods, 2020, 4(4): 440-447. doi: 10.1007/s41605-020-00209-6
    [34] Zhao Yaliang, Duan Zhe, Ji Daheng, et al. First turn around strategy for HEPS[C]//Proceedings of the 8th International Particle Accelerator Conference. Copenhagen, Denmark, 2017.
    [35] Wang Bin, Duan Zhe, Ji Daheng, et al. Progress of the first-turn commissioning simulations for HEPS[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021.
    [36] Ji Daheng, Cui Xiaohao, Duan Zhe, et al. Beam performance simulation with error effects and correction on HEPS design[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018.
    [37] Wu Lei, Zhou Ningchuang, Li Chunhua, et al. Design and test of the beam-based alignment sextupole experimental mover prototype for HEPS[J]. Radiation Detection Technology and Methods, 2021, 5(4): 570-575. doi: 10.1007/s41605-021-00287-0
    [38] 季大恒, 焦毅, 段哲. HEPS包含ID的误差校正结果[R]. HEPS-AC-AP-TN-2021-003-V0, 2021

    Ji Daheng, Jiao Yi, Duan Zhe. Error correction result with insertion device for the HEPS[R]. HEPS-AC-AP-TN-2021-003-V0, 2021
    [39] Yan Fang, Xu Gang, Lin Guoping, et al. The design and prototype test for the tunnel foundation of high energy photon source[C]//Proceedings of the 11th Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. Chicago, IL, USA, 2021.
    [40] Huang Xiyang, Jiao Yi, Wei Yuanyuan. Preliminary investigation of the noises and updates on physics studies of FOFB in HEPS[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021.
    [41] 黄玺洋, 魏源源. FOFB-only模拟总结[R]. HEPS-AC-AP-TN-2022-009-V0, 2022

    Huang Xiyang, Wei Yuanyuan. Summary of the FOFB-only simulations[R]. HEPS-AC-AP-TN-2022-009-V0, 2022
    [42] Wang Na, Tian Saike, Li Xiaoyu, et al. Development of the impedance model in HEPS[C]//Proceedings of the 8th International Particle Accelerator Conference. Copenhagen, Denmark, 2017.
    [43] Wang Na, Tian Saike, Wang Jiuqing. Impedance evaluation of masks in the HEPS storage ring[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021.
    [44] Wang Na, Tian Saike, Wang Lei, et al. Impedance optimization and measurements of the injection stripline kicker[J]. Physical Review Accelerators and Beams, 2021, 24: 034401. doi: 10.1103/PhysRevAccelBeams.24.034401
    [45] Zheng Hongjuan, Zhang Pei, Li Zhongquan, et al. Design optimization of a mechanically improved 499.8-MHz single-cell superconducting cavity for HEPS[J]. IEEE Transactions on Applied Superconductivity, 2021, 31: 3500109.
    [46] Zhang Pei, Zhang Xinying, Li Zhongquan, et al. Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta=1 cavity[J]. Review of Scientific Instruments, 2019, 90: 084705. doi: 10.1063/1.5119093
    [47] 王娜, 许海生, 田赛克, 等. 高能同步辐射光源中的耦合阻抗及束流集体效应研究[J]. 原子能科学技术, 2019, 53(9):1601-1606 doi: 10.7538/yzk.2019.youxian.0170

    Wang Na, Xu Haisheng, Tian Saike, et al. Study of beam coupling impedance and beam collective effect in High Energy Photon Source[J]. Atomic Energy Science and Technology, 2019, 53(9): 1601-1606 doi: 10.7538/yzk.2019.youxian.0170
    [48] 许海生, 王娜, 田赛克. HEPS储存环V3.1 lattice中阻抗引起的束流集体不稳定性[R]. HEPS-AC-AP-TN-2021-042-V0, 2021

    Xu Haisheng, Wang Na, Tian Saike. Collective beam instability caused by impedance in HEPS storage ring v3.1 lattice[R]. HEPS-AC-AP-TN-2021-042-V0, 2021
    [49] Xu Haisheng, Xu Jingye, Wang Na. Influences of harmonic cavities on single-bunch instabilities in electron storage rings[J]. Nuclear Science and Techniques, 2021, 32: 89. doi: 10.1007/s41365-021-00926-7
    [50] Tian Saike, Wang Jiuqing, Xu Gang, et al. Intra-beam scattering studies for low emittance at BAPS[J]. Chinese Physics C, 2015, 39(6): 067001. doi: 10.1088/1674-1137/39/6/067001
    [51] 许海生, 王娜, 田赛克, 等. HEPS储存环lattice全流强参数[R]. HEPS-AC-AP-TN-2020-027-V1, 2021

    Xu Haisheng, Wang Na, Tian Saike, et al. Full charge beam prameters of the HEPS storage ring[R]. HEPS-AC-AP-TN-2020-027-V1, 2021
    [52] Cui Xiaohao, Jiao Yi, Zhao Yaliang. Beam loss simulations during beam dumping in HEPS[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021.
    [53] Li Nan, Zhao Yaliang, Jiao Yi. Comparison simulation results of the collimator aperture in HEPS storage ring[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021.
    [54] 赵亚亮, 焦毅, 李春华. MPS 阈值和同步光引出张角总结[R]. HEPS-AC-AP-TN-2020-026-V0, 2020

    Zhao Yaliang, Jiao Yi, Li Chunhua. Summary of MPS threshold and synchronous light extraction angle[R]. HEPS-AC-AP-TN-2020-026-V0, 2020
    [55] 李超, 李春华. HEPS中同步光挡块的设计考虑[R]. HEPS-AC-AP-TN-2019-019-V0, 2019

    Li Chao, Li Chunhua. Design consideration of synchronous radiation masks in HEPS[R]. HEPS-AC-AP-TN-2019-019-V0, 2019
    [56] 纪红飞, 李春华, 季大恒, 等. HEPS储存环中同步光挡块挡光效果的核算[R]. HEPS-AC-AP-TN-2021-019-V0, 2021

    Ji Hongfei, Li Chunhua, Ji Daheng, et al. Calculation of the effect of synchronous radiation masks in HEPS storage ring[R]. HEPS-AC-AP-TN-2021-019-V0, 2021
    [57] Lu Xiaohan, Ye Qiang, Ji Hongfei, et al. Status of high level application development for HEPS[C]//Proceedings of the 18th International Conference on Accelerator and Large Experimental Physics Control Systems. Shanghai, China, 2021
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2000
  • HTML全文浏览量:  700
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-07-09
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回