留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑压水池温度分层影响因素

郭容达 张丹迪 曹学武

郭容达, 张丹迪, 曹学武. 抑压水池温度分层影响因素[J]. 强激光与粒子束, 2022, 34: 086001. doi: 10.11884/HPLPB202234.220084
引用本文: 郭容达, 张丹迪, 曹学武. 抑压水池温度分层影响因素[J]. 强激光与粒子束, 2022, 34: 086001. doi: 10.11884/HPLPB202234.220084
Guo Rongda, Zhang Dandi, Cao Xuewu. Experimental research on influencing factors of temperature stratification in suppression pool[J]. High Power Laser and Particle Beams, 2022, 34: 086001. doi: 10.11884/HPLPB202234.220084
Citation: Guo Rongda, Zhang Dandi, Cao Xuewu. Experimental research on influencing factors of temperature stratification in suppression pool[J]. High Power Laser and Particle Beams, 2022, 34: 086001. doi: 10.11884/HPLPB202234.220084

抑压水池温度分层影响因素

doi: 10.11884/HPLPB202234.220084
基金项目: 中核集团领创科研项目资助
详细信息
    作者简介:

    郭容达,grd642293395@sjtu.edu.cn

    通讯作者:

    曹学武,caoxuewu@sjtu.edu.cn

  • 中图分类号: TL334

Experimental research on influencing factors of temperature stratification in suppression pool

  • 摘要: 对于小型模块式反应堆,可采用安全壳抑压装置限制失水事故引起的安全壳快速升温升压。然而随着排放质量流率及水池水温的变化,水池中可能出现温度分层现象,进而降低传热传质效果。建立了抑压排放水池温度分层实验装置,开展了蒸汽质量流率、鼓泡器淹没深度及气水容积比对水池温度分层特性影响的实验研究。结果表明:在较宽的蒸汽质量流率范围内,水池内均发生了温度分层现象,随着质量流率增大,对分层的影响程度减弱,冷热交界面下移,带动更多水体参与热量交换;鼓泡器淹没深度增加导致热交界面位置下移,水体搅动作用增强,从而提高水体冷却利用率;气水容积比增大,冷热交界面下移,受扰动区域增大。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental facility

    图  2  不同蒸汽质量流率下水池温度瞬态图

    Figure  2.  Temperature transient diagram of pool at different steam mass flux

    图  3  冷热交界面机理形成示意图

    Figure  3.  Schematic diagram of formation mechanism of thermal interface

    图  4  淹没深度2.2 m时水池温度瞬态图

    Figure  4.  Temperature transient diagram of pool at submerged depth of 2.2 m

    图  5  不同淹没深度下水池高度方向温度分布

    Figure  5.  Temperature distribution in pool height direction at different submerged depths

    图  6  气水容积比0.56时水池温度瞬态图

    Figure  6.  Temperature transient diagram of pool while gas-water volume ratio equals 0.56

    图  7  不同气水容积比下水池高度方向温度分布

    Figure  7.  Temperature distribution in pool height direction at different gas-water volume ratio

  • [1] 刘友宏, 孙明月. 出口高度对非能动安全壳冷却系统影响[J]. 强激光与粒子束, 2015, 27:126002. (Liu Youhong, Sun Mingyue. Effects of outlet height on passive containment cooling system[J]. High Power Laser and Particle Beams, 2015, 27: 126002 doi: 10.11884/HPLPB201527.126002

    Liu Youhong, Sun Mingyue. Effects of outlet height on passive containment cooling system[J]. High Power Laser and Particle Beams, 2015, 27: 126002 doi: 10.11884/HPLPB201527.126002
    [2] 戚雄飞, 侯丽强, 杜政瑀, 等. 单隔间内氢气流动分布特性数值模拟与实验验证[J]. 强激光与粒子束, 2020, 32:056002. (Qi Xiongfei, Hou Liqiang, Du Zhengyu, et al. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32: 056002

    Qi Xiongfei, Hou Liqiang, Du Zhengyu, et al. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32: 056002
    [3] 蒋孝蔚, 邓坚, 余红星, 等. 小型压水堆安全壳抑压传热研究[J]. 核动力工程, 2018, 39(s1):66-69. (Jiang Xiaowei, Deng Jian, Yu Hongxing, et al. Research on containment pressure suppression and heat transfer of small PWR[J]. Nuclear Power Engineering, 2018, 39(s1): 66-69

    Jiang Xiaowei, Deng Jian, Yu Hongxing, et al. Research on containment pressure suppression and heat transfer of small PWR[J]. Nuclear Power Engineering, 2018, 39(s1): 66-69
    [4] Gamble R E, Nguyen T T, Shiralkar B S, et al. Pressure suppression pool mixing in passive advanced BWR plants[J]. Nuclear Engineering and Design, 2001, 204(1/3): 321-336.
    [5] Jo B, Erkan N, Okamoto K. Richardson number criteria for direct-contact-condensation-induced thermal stratification using visualization[J]. Progress in Nuclear Energy, 2020, 118: 103095. doi: 10.1016/j.pnucene.2019.103095
    [6] Cai Jiejin, Jo B, Erkan N, et al. Effect of non-condensable gas on thermal stratification and flow patterns in suppression pool[J]. Nuclear Engineering and Design, 2016, 300: 117-126. doi: 10.1016/j.nucengdes.2016.01.022
    [7] Song D, Erkan N, Jo B, et al. Dimensional analysis of thermal stratification in a suppression pool[J]. International Journal of Multiphase Flow, 2014, 66: 92-100. doi: 10.1016/j.ijmultiphaseflow.2014.07.003
    [8] Norman T L, Revankar S T. Jet-plume condensation of steam–air mixtures in subcooled water, Part 1: Experiments[J]. Nuclear Engineering and Design, 2010, 240(3): 524-532. doi: 10.1016/j.nucengdes.2009.09.019
    [9] Li Weichao, Wang Jianjun, Sun Zhongning, et al. Experimental investigation on thermal stratification induced by steam direct contact condensation with non-condensable gas[J]. Applied Thermal Engineering, 2019, 154: 628-636. doi: 10.1016/j.applthermaleng.2019.03.138
    [10] Solom M, Vierow Kirkland K. Experimental investigation of BWR Suppression Pool stratification during RCIC system operation[J]. Nuclear Engineering and Design, 2016, 310: 564-569. doi: 10.1016/j.nucengdes.2016.10.045
    [11] De Walsche C, de Cachard F. Experimental investigation of condensation and mixing during venting of a steam/non-condensable gas mixture into a pressure suppression pool[C]//Thermal Hydraulics: Presented at 8th International Conference on Nuclear Engineering. 2000.
    [12] Jo B, Erkan N, Takahashi S, et al. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants[J]. Nuclear Engineering and Design, 2016, 305: 39-50. doi: 10.1016/j.nucengdes.2016.05.017
    [13] Gallego-Marcos I, Kudinov P, Villanueva W, et al. Pool stratification and mixing induced by steam injection through spargers: analysis of the PPOOLEX and PANDA experiments[J]. Nuclear Engineering and Design, 2018, 337: 300-316. doi: 10.1016/j.nucengdes.2018.07.004
  • 加载中
图(7)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  232
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-04-20
  • 录用日期:  2022-04-25
  • 网络出版日期:  2022-04-30
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回