留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光等离子体加速的自由电子激光研究新进展

姜海 王文涛 冯珂 顾铮先 李儒新

姜海, 王文涛, 冯珂, 等. 基于激光等离子体加速的自由电子激光研究新进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220090
引用本文: 姜海, 王文涛, 冯珂, 等. 基于激光等离子体加速的自由电子激光研究新进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220090
Jiang Hai, Wang Wentao, Feng Ke, et al. Research progress of free electron laser based on laser plasma acceleration[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220090
Citation: Jiang Hai, Wang Wentao, Feng Ke, et al. Research progress of free electron laser based on laser plasma acceleration[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220090

基于激光等离子体加速的自由电子激光研究新进展

doi: 10.11884/HPLPB202234.220090
基金项目: 国家自然科学基金项目(11991072, 11875065, 12105353);中国科学院战略性先导科技专项(XDB16);中国科学技术部国家重点实验室计划和中国科学院青年创新促进会项目(Y201952, 2022242)
详细信息
    作者简介:

    姜海:姜 海,jianghai@siom.ac.cn

    通讯作者:

    王文涛,wwt1980@siom.ac.cn

    李儒新,ruxinli@siom.ac.cn

  • 中图分类号: O53

Research progress of free electron laser based on laser plasma acceleration

  • 摘要: 激光等离子体加速器能够在cm尺度内产生GeV量级的高品质电子束,为研制台式化自由电子激光提供驱动源。但是受限于激光等离子体加速中的难点和现有技术发展,电子束的品质难以达到自由电子激光的需求,尤其在稳定性、发散角和能散等方面,阻碍了台式化自由电子激光的研制。介绍了基于激光等离子体加速器的自由电子激光的最新进展,整理了目前高增益自由电子激光实验过程中存在的主要挑战和对应的解决方案与实验进展,并展望未来的发展方向。最近的研究结果证明,通过控制和优化激光等离子体加速器的注入和加速过程产生的高品质电子束可以在指数增益区域实现自发辐射放大,产生高增益的辐射,这也推动基于激光等离子体加速器的自由电子激光研究进入了一个新的阶段。
  • 图  1  激光等离子体加速器驱动的自由电子激光装置国际分布图

    图  2  Chicane示意图

    Figure  2.  Schematic diagram of chicane

    图  3  横向梯度波荡器示意图

    图  4  紧凑型束流传输线示意图

    Figure  4.  Schematic diagram of compact beamline

  • [1] Daukantas P. Synchrotron light sources for the 21st century[J]. Optics and Photonics News, 2021, 32(9): 32-39. doi: 10.1364/OPN.32.9.000032
    [2] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [3] Gordon D, Tzeng K C, Clayton C E, et al. Observation of electron energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave[J]. Physical Review Letters, 1998, 80(10): 2133-2136. doi: 10.1103/PhysRevLett.80.2133
    [4] Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002. doi: 10.1103/PhysRevLett.113.245002
    [5] Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
    [6] Nakajima K. Towards a table-top free-electron laser[J]. Nature Physics, 2008, 4(2): 92-93. doi: 10.1038/nphys846
    [7] Emma C, Van Tilborg J, Assmann R, et al. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 2021, 9: e57. doi: 10.1017/hpl.2021.39
    [8] Sarri G. Laser-driven positron sources for applications in fundamental science and industry[C]//Proceedings of SPIE 11790, Applying Laser-driven Particle Acceleration II, Medical and Nonmedical Uses of Distinctive Energetic Particle and Photon Sources: SPIE Optics + Optoelectronics Industry Event. 2021: 117900F.
    [9] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
    [10] Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
    [11] Chen Min, Sheng Zhengming, Ma Yanyun, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. Journal of Applied Physics, 2006, 99: 056109. doi: 10.1063/1.2179194
    [12] Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006. doi: 10.1103/PhysRevLett.110.185006
    [13] Yu L L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2014, 112: 125001. doi: 10.1103/PhysRevLett.112.125001
    [14] Tomassini P, Terzani D, Baffigi F, et al. High-quality 5 GeV electron bunches with resonant multi-pulse ionization injection[J]. Plasma Physics and Controlled Fusion, 2020, 62: 014010. doi: 10.1088/1361-6587/ab45c5
    [15] Xu X L, Li F, An W, et al. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime[J]. Physical Review Accelerators and Beams, 2017, 20: 111303. doi: 10.1103/PhysRevAccelBeams.20.111303
    [16] Pollock B B, Clayton C E, Ralph J E, et al. Demonstration of a narrow energy spread, ~0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 2011, 107: 045001. doi: 10.1103/PhysRevLett.107.045001
    [17] Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 2011, 107: 035001. doi: 10.1103/PhysRevLett.107.035001
    [18] Zhang Zhijun, Li Wentao, Liu Jiansheng, et al. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching[J]. Physics of Plasmas, 2016, 23: 053106. doi: 10.1063/1.4947536
    [19] Brinkmann R, Delbos N, Dornmair I, et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density[J]. Physical Review Letters, 2017, 118: 214801. doi: 10.1103/PhysRevLett.118.214801
    [20] Manahan G G, Habib A F, Scherkl P, et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams[J]. Nature Communications, 2017, 8: 15705. doi: 10.1038/ncomms15705
    [21] Li F, Hua J F, Xu X L, et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator[J]. Physical Review Letters, 2013, 111: 015003. doi: 10.1103/PhysRevLett.111.015003
    [22] Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
    [23] Ke L T, Feng K, Wang W T, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 2021, 126: 214801. doi: 10.1103/PhysRevLett.126.214801
    [24] Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 2020, 11: 6355. doi: 10.1038/s41467-020-20245-6
    [25] Jalas S, Kirchen M, Messner P, et al. Bayesian optimization of a laser-plasma accelerator[J]. Physical Review Letters, 2021, 126: 104801. doi: 10.1103/PhysRevLett.126.104801
    [26] Dornmair I, Floettmann K, Maier A R. Emittance conservation by tailored focusing profiles in a plasma accelerator[J]. Physical Review Accelerators and Beams, 2015, 18: 041302. doi: 10.1103/PhysRevSTAB.18.041302
    [27] Fang Ming, Wang Wentao, Zhang Zhijun, et al. Long-distance characterization of high-quality laser-wakefield-accelerated electron beams[J]. Chinese Optics Letters, 2018, 16: 040201. doi: 10.3788/COL201816.040201
    [28] van Tilborg J, Steinke S, Geddes C G R, et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams[J]. Physical Review Letters, 2015, 115: 184802. doi: 10.1103/PhysRevLett.115.184802
    [29] Thaury C, Guillaume E, Döpp A, et al. Demonstration of relativistic electron beam focusing by a laser-plasma lens[J]. Nature Communications, 2015, 6: 6860. doi: 10.1038/ncomms7860
    [30] van Tilborg J, Barber S K, Isono F, et al. Free-electron lasers driven by laser plasma accelerators[J]. AIP Conference Proceedings, 2017, 1812: 020002.
    [31] Wu Fenxiang, Zhang Zongxin, Yang Xiaojun, et al. Performance improvement of a 200TW/1Hz Ti: sapphire laser for laser wakefield electron accelerator[J]. Optics & Laser Technology, 2020, 131: 106453.
    [32] Maier A R, Meseck A, Reiche S, et al. Demonstration scheme for a laser-plasma-driven free-electron laser[J]. Physical Review X, 2012, 2: 031019.
    [33] Huang Zhirong, Ding Yuantao, Schroeder C B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator[J]. Physical Review Letters, 2012, 109: 204801. doi: 10.1103/PhysRevLett.109.204801
    [34] Couprie M E, Labat M, Evain C, et al. An application of laser-plasma acceleration: towards a free-electron laser amplification[J]. Plasma Physics and Controlled Fusion, 2016, 58: 034020. doi: 10.1088/0741-3335/58/3/034020
    [35] Delbos N, Werle C, Dornmair I, et al. Lux - A laser-plasma driven undulator beamline[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909: 318-322.
    [36] Liu Tao, Zhang Tong, Wang Dong, et al. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator[J]. Physical Review Accelerators and Beams, 2017, 20: 020701. doi: 10.1103/PhysRevAccelBeams.20.020701
    [37] Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 2008, 4(2): 130-133. doi: 10.1038/nphys811
    [38] Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 2009, 5(11): 826-829. doi: 10.1038/nphys1404
    [39] André T, Andriyash I A, Loulergue A, et al. Control of laser plasma accelerated electrons for light sources[J]. Nature Communications, 2018, 9: 1334. doi: 10.1038/s41467-018-03776-x
    [40] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
  • 加载中
图(4)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  41
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-07-08

目录

    /

    返回文章
    返回