留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放射性物质137Cs对微波大气击穿特性影响研究

陈志国 闫二艳 刘星辰 孟凡宝 黄诺慈 杨浩 鲍向阳

陈志国, 闫二艳, 刘星辰, 等. 放射性物质137Cs对微波大气击穿特性影响研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220100
引用本文: 陈志国, 闫二艳, 刘星辰, 等. 放射性物质137Cs对微波大气击穿特性影响研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220100
Chen Zhiguo, Yan Eryan, Liu Xingchen, et al. Effect of radioactive material 137Cs on microwave breakdown characteristics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220100
Citation: Chen Zhiguo, Yan Eryan, Liu Xingchen, et al. Effect of radioactive material 137Cs on microwave breakdown characteristics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220100

放射性物质137Cs对微波大气击穿特性影响研究

doi: 10.11884/HPLPB202234.220100
基金项目: 国家自然科学基金项目(62001442); 四川省重要技术标准研究项目(ZYBZ2021-29)
详细信息
    作者简介:

    陈志国,iamczg@qq.com

    通讯作者:

    闫二艳,yaneryan_2002@163.com

  • 中图分类号: O451

Effect of radioactive material 137Cs on microwave breakdown characteristics

  • 摘要: 针对现有的放射性物质探测手段有效距离近和效率较低等局限性,考虑到高功率微波(HPM)良好的空间辐射特性,研究放射性物质对微波大气击穿特性的影响,以实现利用HPM远距离探测放射性物质的设想。阐释了微波脉冲等离子体击穿原理和自由电子对击穿特性影响,分析了放射性物质137Cs射线产生自由电子的过程,在此基础上分析了HPM大气击穿时间和击穿阈值。基于HPM大气击穿等离子体实验装置,分别在6000 Pa、7000 Pa和8000 Pa的低气压环境对有、无放射源存在情形开展多次HPM辐照实验。实验结果表明:放射源的存在降低了约10%的HPM大气击穿阈值,缩短约50%的击穿时间。
  • 图  1  击穿阈值场强理论值

    Figure  1.  Breakdown threshold field strength

    图  2  实验平台

    Figure  2.  Experimental platform

    图  3  60 s内击穿概率随场强变化对比

    Figure  3.  Comparison plot of breakdown probabilities varying with field strength within 60s

    图  4  场强1560 V/cm时,击穿时间分布图

    Figure  4.  Breakdown time distribution at 1560 V/cm

    图  5  场强为1560 V/cm,击穿概率随辐照时间变化对比图

    Figure  5.  Breakdown probability versus irradiation time at 1560 V/cm

  • [1] 王百荣, 田新, 杨忠平. 非法运输放射性物质的探查[J]. 辐射防护, 2005, 25(6):376-379. (Wang Bairong, Tian Xin, Yang Zhongping. Detection of illicit trafficking of radioactive materials[J]. Radiation Protection, 2005, 25(6): 376-379 doi: 10.3321/j.issn:1000-8187.2005.06.008

    Wang Bairong, Tian Xin, Yang Zhongping. Detection of illicit trafficking of radioactive materials[J]. Radiation Protection, 2005, 25(6): 376-379 doi: 10.3321/j.issn:1000-8187.2005.06.008
    [2] 杨敏, 党瑞荣, 刘彤, 等. 放射性探测器发展分析以及应用介绍[J]. 石油仪器, 2009, 23(5):44-45. (Yang Min, Dang Ruirong, Liu Tong, et al. Development analysis and application of radioactivity detectors[J]. Petroleum Instruments, 2009, 23(5): 44-45

    Yang Min, Dang Ruirong, Liu Tong, et al. Development analysis and application of radioactivity detectors[J]. Petroleum Instruments, 2009, 23(5): 44-45
    [3] 张玉敏. 国外放射性探测装备和技术的发展现状与趋势[J]. 舰船防化, 2009(1):1-5. (Zhang Yumin. Development of overseas radioactive detecting technology[J]. Chemical Defence on Ships, 2009(1): 1-5

    Zhang Yumin. Development of overseas radioactive detecting technology[J]. Chemical Defence on Ships, 2009(1): 1-5
    [4] 李惠彬, 冯元举, 韩斌. 航空放射性测量技术对核事故泄露核素的探测能力评估[C]//第十六届全国核电子学与核探测技术学术年会论文集(下册). 绵阳: 中国电子学会核电子学与核探测技术分会, 2012: 429-433

    Li Huibin, Feng Yuanju, Han Bin. Evaluation of the detection capability of aeronautical radiometric technology on nuclear accident leaked nuclides[C]//The 16th National Annual Conference on Nuclear Electronics and Nuclear Detection Technology. Mianyang: Branch of Nuclear Electronics and Nuclear Detection Technology, China Electronics Society, 2012: 429-433
    [5] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
    [6] Nusinovich G S. Remote detection of concealed radioactive materials by using focused powerful terahertz radiation[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(6): 515-535. doi: 10.1007/s10762-016-0243-3
    [7] Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 2017, 8: 15394. doi: 10.1038/ncomms15394
    [8] 周前红, 孙会芳, 董志伟, 等. 微波大气击穿阈值的理论研究[J]. 物理学报, 2015, 64:175202. (Zhou Qianhong, Sun Huifang, Dong Zhiwei, et al. Theoretical study on the microwave air breakdown threshold[J]. Acta Physica Sinica, 2015, 64: 175202 doi: 10.7498/aps.64.175202

    Zhou Qianhong, Sun Huifang, Dong Zhiwei, et al. Theoretical study on the microwave air breakdown threshold[J]. Acta Physica Sinica, 2015, 64: 175202 doi: 10.7498/aps.64.175202
    [9] 闫二艳, 邱风, 孟凡宝, 等. HPM大气击穿特性初步研究[C]//第十届全国高功率微波学术研讨会论文集. 2015: 319-322

    Yan Eryan, Qiu Feng, Meng Fanbao, et al. Preliminary study on atmospheric breakdown characteristics of HPM[C]//Proceedings of the 10th National Symposium on HPM. 2015: 319-322
    [10] 曹金坤, 周东方, 牛忠霞, 等. 重复频率高功率微波脉冲的大气击穿[J]. 强激光与粒子束, 2006, 18(1):115-118. (Cao Jinkun, Zhou Dongfang, Niu Zhongxia, et al. Air breakdown by repetition-rate high power microwave pulse[J]. High Power Laser and Particle Beams, 2006, 18(1): 115-118

    Cao Jinkun, Zhou Dongfang, Niu Zhongxia, et al. Air breakdown by repetition-rate high power microwave pulse[J]. High Power Laser and Particle Beams, 2006, 18(1): 115-118
    [11] 朱连燕. 重复频率高功率微波脉冲大气击穿的理论研究[D]. 成都: 西南交通大学, 2014: 5-14

    Zhu Lianyan. The orical studies of air breakdown by repetition-rate high power microwave pulse[D]. Chengdu: Southwest Jiaotong University, 2014: 5-14
    [12] 蔡北兵, 余道杰, 周东方, 等. 氧负离子解吸附过程HPM大气击穿弛豫时间分析[J]. 强激光与粒子束, 2017, 29:113004. (Cai Beibing, Yu Daojie, Zhou Dongfang, et al. Analysis of air breakdown relaxation time of high power microwave based on o- detachment[J]. High Power Laser and Particle Beam, 2017, 29: 113004 doi: 10.11884/HPLPB201729.170265

    Cai Beibing, Yu Daojie, Zhou Dongfang, et al. Analysis of air breakdown relaxation time of high power microwave based on o- detachment[J]. High Power Laser and Particle Beam, 2017, 29: 113004 doi: 10.11884/HPLPB201729.170265
    [13] 赵刚, 闫二艳, 陈朝阳, 等. 高功率微波大气击穿阈值分析及实验[J]. 强激光与粒子束, 2013, 25(s1):111-114. (Zhao Gang, Yan Eryan, Chen Chaoyang, et al. Analysis and experimental study on threshold of air breakdown by high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(s1): 111-114

    Zhao Gang, Yan Eryan, Chen Chaoyang, et al. Analysis and experimental study on threshold of air breakdown by high power microwave[J]. High Power Laser and Particle Beams, 2013, 25(s1): 111-114
    [14] 胡涛, 周东方, 李庆荣, 等. 电子弛豫过程对重复频率高功率微波大气击穿的影响[J]. 强激光与粒子束, 2009, 21(4):545-549. (Hu Tao, Zhou Dongfang, Li Qingrong, et al. The effect of electronic relaxation process on air breakdown caused by repetition frequency HPM[J]. High Power Laser and Particle Beams, 2009, 21(4): 545-549

    Hu Tao, Zhou Dongfang, Li Qingrong, et al. The effect of electronic relaxation process on air breakdown caused by repetition frequency HPM[J]. High Power Laser and Particle Beams, 2009, 21(4): 545-549
    [15] Yu Daojie, Chai Mengjuan, Zhou Dongfang, et al. Research on dielectric focusing lens antenna for HPM atmospheric breakdown experiments[J]. Chinese Journal of Electronics, 2019, 28(1): 202-206. doi: 10.1049/cje.2018.09.004
    [16] Dimant Y S, Nusinovich G S, Sprangle P, et al. Propagation of gamma rays and production of free electrons in air[J]. Journal of Applied Physics, 2012, 112: 083303. doi: 10.1063/1.4762007
    [17] 欧阳建明. 高空核爆炸背景下大气的电离过程及其影响研究[D]. 长沙: 国防科学技术大学, 2014: 37-41

    Ouyang Jianming. The research on ionization processes and ionization effects of atmosphere by high-altitude nuclear explosions[D]. Changsha: National University of Defense Technology, 2014: 37-41
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  41
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 录用日期:  2022-06-30
  • 修回日期:  2022-06-16
  • 网络出版日期:  2022-07-05

目录

    /

    返回文章
    返回