留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成像法在电磁叠加型光阴极注入器中的应用

范培亮 王科 何小中 杨柳 魏涛 江孝国 杨治勇 杨兴林

范培亮, 王科, 何小中, 等. 成像法在电磁叠加型光阴极注入器中的应用[J]. 强激光与粒子束, 2022, 34: 104017. doi: 10.11884/HPLPB202234.220112
引用本文: 范培亮, 王科, 何小中, 等. 成像法在电磁叠加型光阴极注入器中的应用[J]. 强激光与粒子束, 2022, 34: 104017. doi: 10.11884/HPLPB202234.220112
Fan Peiliang, Wang Ke, He Xiaozhong, et al. Application of imaging method in overlapping field type photoinjector[J]. High Power Laser and Particle Beams, 2022, 34: 104017. doi: 10.11884/HPLPB202234.220112
Citation: Fan Peiliang, Wang Ke, He Xiaozhong, et al. Application of imaging method in overlapping field type photoinjector[J]. High Power Laser and Particle Beams, 2022, 34: 104017. doi: 10.11884/HPLPB202234.220112

成像法在电磁叠加型光阴极注入器中的应用

doi: 10.11884/HPLPB202234.220112
基金项目: 国家自然科学基金项目(11805191, 12035012,11875242)
详细信息
    作者简介:

    范培亮,fanpeiliang@163.com

    通讯作者:

    王 科,caepacc@sina.com

  • 中图分类号: O59

Application of imaging method in overlapping field type photoinjector

  • 摘要: 光阴极注入器为X射线自由电子激光提供高品质电子束团,其中,阴极面上电子发射的均匀性在很大程度上影响着电子束团的束流品质,实验中常通过测量光阴极量子效率分布来评估电子发射的均匀性。成像法测量光阴极量子效率分布时具有实时、高分辨的特点,目前,此方法只在电磁分离型光阴极注入器中有所应用。探索成像法在电磁叠加型光阴极注入器中应用的可行性,采用理论分析结合数值模拟的方法,研究结果显示成像法适用于电磁叠加型光阴极注入器,且由此获得的量子效率分布具有阴极面中心位置处分辨率优于外层的特点。此外,针对成像法在初始束团横向动量分布测量中的应用进行模拟计算分析,并在此基础上提出一种判断阴极面剩余磁场是否为零的方法。
  • 图  1  阴极附近电磁场分布

    Figure  1.  Electric and magnetic fields distribution in the cathode vicinity

    图  2  粒子在z=0与z = 2.0 m处的横向分布

    Figure  2.  Transverse distribution at z = 0.0 m and z =2.0 m

    图  3  分辨率$ {\delta _x} $随螺线管磁场的变化

    Figure  3.  Resolution $ {\delta _x} $ versus solenoid magnetic field

    图  4  不同半径情况下的$ {\delta _x} $ (图中R为初始束团分布的最大半径)

    Figure  4.  $ {\delta _x} $ with different radius (R is the maximum radius of the initial particle distribution)

    图  5  初始动量分布与z=2.0 m处的横向粒子分布

    Figure  5.  Transverse momentum distribution and particle distribution at z=2.0 m

    图  6  束斑尺寸$ {\sigma _x} $随副线圈电流$ {I_{\text{b}}} $的变化, $ {I_{\text{b}}} $=200 A时阴极表面磁场为零

    Figure  6.  $ {\sigma _x} $ as a function of the bucking solenoid current $ {I_{\text{b}}} $, $ {B_{{\text{res}}}}{\text{ = }}0 $ when $ {I_{\text{b}}} $=200 A

  • [1] Dowell D H, Bazarov I, Dunham B, et al. Cathode R&D for future light sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622(3): 685-697.
    [2] Altarelli M, Brinkmann R, Chergui M, et al. Technical design report of the European X-Ray free-electron laser[R]. DESY Report No. 2006-097, 2006.
    [3] Arthur J, Anfinrud P, Audebert P, et al. LCLS conceptual design[R]. Report No. SLAC-R-593, 2002.
    [4] Zhou F, Adolphsen C, Benwell A, et al. Commissioning of the SLAC linac coherent light source II electron source[J]. Physical Review Accelerators and Beams, 2021, 24: 073401. doi: 10.1103/PhysRevAccelBeams.24.073401
    [5] Russell S J, Carlsten B E, Duffy L D, et al. MaRIE XFEL pre-conceptual reference design injector[R]. LA-UR-15-21963, 2015.
    [6] Gubeli J, Evans R, Grippo A, et al. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 475(1/3): 554-558.
    [7] Corlett P A, Rogers J H P. ERLP quantum efficiency scanner[C]//Proceedings of EPAC 2006. 2006: 3179-3181.
    [8] Riddick B C, Montgomery E J, Fiorito R B, et al. Photocathode quantum efficiency mapping at high resolution using a digital micromirror device[J]. Physical Review Accelerators and Beams, 2013, 16: 062802. doi: 10.1103/PhysRevSTAB.16.062802
    [9] Scholl A. Applications of photoemission electron microscopy (PEEM) in magnetism research[J]. Current Opinion in Solid State and Materials Science, 2003, 7(1): 59-66. doi: 10.1016/S1359-0286(03)00003-2
    [10] Wu Dai, Xiao Dexin, Wang Jianxin, et al. In situ high resolution real-time quantum efficiency imaging for photocathodes[DB/OL]. arXiv preprint arXiv: 1710.08148, 2017.
    [11] 范培亮, 何小中, 杨柳, 等. 基于螺线管扫描法进行电磁叠加场中热发射度测量的仿真分析[J]. 强激光与粒子束, 2021, 33:024003 doi: 10.11884/HPLPB202133.200197

    Fan Peiliang, He Xiaozhong, Yang Liu, et al. Simulation of the solenoid scan method used in overlapping field for thermal emittance measurement[J]. High Power laser and Particle Beams, 2021, 33: 024003 doi: 10.11884/HPLPB202133.200197
    [12] 刘祖平, 冯光耀. 束流光学[M]. 2版. 合肥: 中国科学技术大学出版社, 2014

    Liu Zuping, Feng Guangyao. Beam optics[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2014
    [13] Chao A, Tigner M. Handbook of accelerator physics and engineering[M]. Sigapore: Mainland Press, 2006.
    [14] Floettmann K. A space charge tracking algorithm[R]. Hamburg, 2017.
    [15] Huang P, Qian H, Chen Y, et al. Single shot cathode transverse momentum imaging in photoinjector[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 1964-1966.
  • 加载中
图(6)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  244
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-31
  • 网络出版日期:  2022-06-11
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回