留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
杜应超, 陈寒, 张鸿泽, 等. 紧凑型单能伽马射线源[J]. 强激光与粒子束, 2022, 34: 104010. doi: 10.11884/HPLPB202234.220132
引用本文: 杜应超, 陈寒, 张鸿泽, 等. 紧凑型单能伽马射线源[J]. 强激光与粒子束, 2022, 34: 104010. doi: 10.11884/HPLPB202234.220132
Du Yingchao, Chen Han, Zhang Hongze, et al. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34: 104010. doi: 10.11884/HPLPB202234.220132
Citation: Du Yingchao, Chen Han, Zhang Hongze, et al. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34: 104010. doi: 10.11884/HPLPB202234.220132

紧凑型单能伽马射线源

doi: 10.11884/HPLPB202234.220132
基金项目: 国家自然科学基金项目(12027902)
详细信息
    作者简介:

    杜应超,dych@mail.tsinghua.edu.cn

    通讯作者:

    唐传祥,tang.xuh@mail.tsinghua.edu.cn

  • 中图分类号: TL929;TL53

A very compact inverse Compton scattering gamma-ray source

  • 摘要: 基于高亮度电子束与超短强激光相互作用的逆康普顿散射X/γ射线源具有单色性好、能量可调、偏振可控等特点,在核安全及核安保领域具有广泛的应用前景。清华大学将研制国际上首套能量达MeV的紧凑准单能伽马源装置并开展包括先进辐射成像、基于核共振荧光的物质分析检测等应用工作。给出该光源设计方案,以及针对其关键性能指标进行的优化及光源最终性能指标。目前已完成光源的设计,正在进行部件的加工采购,预计将于2023年启动装置的安装调试工作,于2025年完成项目的调试和验收。
  • 图  1  紧凑型准单能伽马射线源装置构成示意图

    Figure  1.  Schematic diagram of the very compact inverse Compton scattering gamma-ray source (VIGAS)

    图  2  加速器组成示意图

    Figure  2.  Layout of the accelerator in VIGAS

    图  3  初步优化后束团长度与发射度及束团能散关系(束流能量360 MeV)

    Figure  3.  Relation between bunch length and emittance plus energy spread after optimization

    图  4  电荷量为200 pC和500 pC时发射度与束团长度的帕累托前沿

    Figure  4.  Pareto front of emittance and bunch length with 200 pC bunch charge and 500 pC bunch charge

    图  5  200 pC电荷量束流动力学模拟结果

    Figure  5.  Beam dynamics simulation results in the case of 200 pC bunch charge

    图  6  X波段加速管梯度调节比例与输出束流能量及发射度关系曲线(200 pC电荷量)

    Figure  6.  Bunch energy and emittance versus the ratio of acceleration gradient

    图  7  结合激光波长调整后光子能量随加速管梯度调节比例变化

    Figure  7.  Photon energy versus the ratio of acceleration gradient

    图  8  驱动激光整形设计方框图

    Figure  8.  Block diagram of driving laser shaping design

    图  9  散射激光设计方案图

    Figure  9.  Block diagram of scattering laser design

    图  10  不同能量下模拟光子产额

    Figure  10.  Simulated photon yield at different photon energy

    图  11  360 MeV,200 pC电子束参数与800 nm及400 nm散射激光时伽马射线收集角与光子带宽及收集角内光子比例关系曲线

    Figure  11.  Photon bandwidth and the proportion within the collection angle versus the collection angle

    图  12  360 MeV,200 pC,800 nm参数下不同收集角内光子能谱分布

    Figure  12.  Photon spectroscopy within different collection angles using 800 nm scattering laser

    图  13  360 MeV,200 pC,400 nm参数下不同收集角内光子能谱分布

    Figure  13.  Photon spectroscopy within different collection angles using 400 nm scattering laser

    图  14  联合参数抖动模拟中光子能谱

    Figure  14.  Photon spectroscopy in simulation taking jitter into consideration

    表  1  紧凑型准单能伽马源性能参数

    Table  1.   Performance parameters of VIGAS

    parametervalue
    γ ray photon energycontinuously adjustable between 0.2~4.8 MeV
    relative bandwidth (RMS)/%<1.5 (after collimation)
    photon yield/(photons·s−1)>4.0×108@0.2~2.4 MeV;>1.0×108@2.4~4.8 MeV
    photon yield within 1.5% bandwidth>4.0×106@0.2~2.4 MeV; >1.0×106@2.4~4.8 MeV
    degree of polarizationadjustable from linear to circular polarization
    下载: 导出CSV

    表  2  电子束流工作参数

    Table  2.   Parameters of electron beam in VIGAS

    parametervalue
    bunch energy/MeV50~350
    bunch charge/pC>200
    normalized emittance/(mm·mrad)<0.6
    bunch length/ps<2
    energy spread/%<0.3
    focused spot size/µm<20
    repetition rate/Hz10
    下载: 导出CSV

    表  3  激光工作参数

    Table  3.   Parameters of scattering laser in VIGAS

    parametervalue
    800 nm400 nm
    bandwidth/nm<15<8
    pulse energy/J>1.5>0.8
    pulse length (FWHM)/ps<10
    focused spot size (RMS)/μm<10
    下载: 导出CSV

    表  4  多目标优化参数(第一列)、参数范围(第二列)及优化结果(第三、四列)

    Table  4.   Variable parameters in the optimization

    parametersrangeoptimization result
    200 pC500 pC
    laser duration/ps[4, 20]7.277.09
    laser beam size (RMS)/mm[0.2, 2]0.20.33
    launch phase/(°)[−20, 20]5.43.0
    gun solenoid strength/T[0.15, 0.35]0.20240.2018
    gun solenoid center/m[0.213 7, 0.213 7]0.21370.2137
    buncher field strength/(MV·m−1)[20, 50]36.143.4
    buncher center/m[0.73, 0.9]0.96650.9665
    buncher phase/(°)[−110, −80]−100−98.5
    linac center/m[1.5, 2]2.4022.402
    linac solenoid center/m[1.5, 2]1.61.6
    linac solenoid strength/T[0, 0.2]0.08040.109
    下载: 导出CSV

    表  5  200 pC标准模式和500 pC高电荷量模式下电子束参数

    Table  5.   Optimized beam parameters with 200 pC bunch charge and 500 pC bunch charge

    normalized emittance/(μm·rad) bunch length (RMS)/mm bunch energy/MeV energy spread (RMS)/MeV bunch charge/pC
    0.294 0.208 361.3 0.45 200
    0.623 0.202 361.5 0.40 500
    下载: 导出CSV

    表  6  光阴极紫外驱动激光参数

    Table  6.   Parameters of the driving laser system

    parametersvalue
    central wavelength/nm267
    repetition rate/Hz10
    pulse energy/μJ2~500
    pulse width (FWHM)/ps5-10
    rising and falling edge (10%~90%)/ps1.0
    beam size (RMS)/mm0.2~2
    energy jitter (RMS)/%<2.0
    time jitter between RF and laser (RMS)/ps<0.1
    下载: 导出CSV

    表  7  联合参数扫描各参数抖动范围

    Table  7.   Parameter jitter range in the joint parameter sweep

    parametersjitter range
    bunch charge/%$ \pm 2 $
    laser duration/%$ \pm 2 $
    laser beam size/%$ \pm 2 $
    gun field strength/%$ \pm 0.1 $
    gun phase$ \pm 0.5 $
    buncher field strength/%$ \pm 0.1 $
    buncher phase$ \pm 0.5 $
    S band linac field strength/%$ \pm 0.1$
    S band linac phase$ \pm 0.5 $
    X band linac field strength/%$ \pm 0.1 $
    X band linac phase$ \pm 1 $
    scattering laser pulse energy/%$ \pm 2$
    relative position between electron and laser beam/μm$ \pm 3 $
    arrival time/ps$ \pm 0.25 $
    下载: 导出CSV
  • [1] Curtis D C. Advancements in nuclear waste assay[D]. Birmingham: University of Birmingham, 2008.
    [2] Willman C. Applications of gamma ray spectroscopy of spent nuclear fuel for safeguards and encapsulation[D]. Uppsala: Uppsala University, 2006.
    [3] Metzger F R. Resonance fluorescence in nuclei[M]//Frisch O R. Progress in Nuclear Physics. New York: Pergamon Press, 1959: 54-88.
    [4] Warren G, Caggiano J, Peplowski P. Potential applications of nuclear resonance fluorescence[J]. AIP Conference Proceedings, 2009, 1194: 106-119.
    [5] Smith L E, Tobin S, Ehinger M, et al. AFCI safeguards enhancement study: technology development roadmap[R]. PNNL-18099, 2008.
    [6] Pruet J, McNabb D P, Hagmann C A, et al. Detecting clandestine material with nuclear resonance fluorescence[J]. Journal of Applied Physics, 2006, 99: 123102. doi: 10.1063/1.2202005
    [7] Quiter B J, Laplace T, Ludewigt B A, et al. Nuclear resonance fluorescence in 240Pu[J]. Physical Review C, 2012, 86: 034307. doi: 10.1103/PhysRevC.86.034307
    [8] Litvinenko V N, Burnham B, Emamian M, et al. Gamma-ray production in a storage ring free-electron laser[J]. Physical Review Letters, 1997, 78(24): 4569-4572. doi: 10.1103/PhysRevLett.78.4569
    [9] Sprangle P, Ting A, Esarey E, et al. Tunable, short pulse hard X-rays from a compact laser synchrotron source[J]. Journal of Applied Physics, 1992, 72(11): 5032-5038. doi: 10.1063/1.352031
    [10] Schoenlein R W, Leemans W P, Chin A H, et al. Femtosecond X-ray pulses at 0.4 Å generated by 90 Thomson scattering: a tool for probing the structural dynamics of materials[J]. Science, 1996, 274(5285): 236-238. doi: 10.1126/science.274.5285.236
    [11] Ting A, Fischer R, Fisher A, et al. Observation of 20 eV X-ray generation in a proof-of-principle laser synchrotron source experiment[J]. Journal of Applied Physics, 1995, 78(1): 575-577. doi: 10.1063/1.360644
    [12] Huang Z R, Ruth R D. Laser-electron storage ring[J]. Physical Review Letters, 1998, 80(5): 976-979. doi: 10.1103/PhysRevLett.80.976
    [13] Variola A, Haissinski J, Loulergue A, et al. ThomX technical design report[R]. 2014.
    [14] Albert F, Anderson S G, Anderson G A, et al. Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays[J]. Optics Letters, 2010, 35(3): 354-356. doi: 10.1364/OL.35.000354
    [15] Korn G, LeGarrec B, Rus B. ELI extreme light infrastructure science and technology with ultra-intense lasers[C]//CLEO: Science and Innovations 2013. Optical Society of America, 2013: CTu2D. 7.
    [16] Wormser G, Barty C, Hajima R, et al. The white book of ELI nuclear physics Bucharest-Magurele, Romania[M]. 2010: 12.
    [17] 郭威, 顾嘉辉, 蔡翔舟, 等. 建立激光同步辐射源的初步探讨[J]. 强激光与粒子束, 2002, 14(5):787-791

    Guo Wei, Gu Jiahui, Cai Xiangzhou, et al. Preliminary discussion of laser synchrotron source construction[J]. High Power Laser and Particle Beams, 2002, 14(5): 787-791
    [18] Luo Wen, Xu W, Pan Q Y, et al. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics[J]. Review of Scientific Instruments, 2010, 81: 013304. doi: 10.1063/1.3282445
    [19] Du Yingchao, Yan Lixin, Hua Jianfei, et al. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source[J]. Review of Scientific Instruments, 2013, 84: 053301. doi: 10.1063/1.4803671
    [20] Du Yingchao, Yan Lixin, Hua Jianfei, et al. Soft X-ray generation experiment at the Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637(1): S168-S171.
    [21] Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(1): S70-S74.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  343
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-07-04
  • 网络出版日期:  2022-07-09
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回