留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双模瑞利-泰勒不稳定性的预热烧蚀效应研究

旷圆圆 卢艳

旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
引用本文: 旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
Citation: Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133

双模瑞利-泰勒不稳定性的预热烧蚀效应研究

doi: 10.11884/HPLPB202234.220133
基金项目: 国家自然科学基金项目(11805003)
详细信息
    作者简介:

    旷圆圆,kuangyy@stu.ahu.edu.cn

    通讯作者:

    卢 艳,luyan2003@ahu.edu.cn

  • 中图分类号: O532+.13

Study on preheating ablative effects of two-mode Rayleigh-Taylor instability

  • 摘要: 针对双模扰动下的烧蚀瑞利-泰勒不稳定性增长问题,采用高精度的数值计算方法,研究了不同预热程度下模耦合产生的多个高次谐波幅值的发展和演化问题。研究表明,三种预热烧蚀条件下,当扰动基模满足长波与短波耦合方式时,谐波中的长波模态占主导,而短波模发展明显受到抑制;当满足短波与短波耦合时,耦合结果带来了许多新的增长较快的长波模态,此时短波模增长呈现小幅震荡形式。比较两种耦合方式可以发现,长波结构在烧蚀瑞利-泰勒不稳定性弱非线性阶段都占主导地位,尤其是短波与短波耦合中气泡与尖钉表现出不同于两个基模的长波模结构。进一步分析预热效应对模耦合增长的影响,发现预热程度越强就越能削弱耦合谐波的增长,这说明预热对烧蚀瑞利-泰勒不稳定性具有致稳作用,这对惯性约束聚变工程中控制烧蚀瑞利-泰勒不稳定性发展具有重要意义。
  • 图  1  不同预热情况下的一维平衡流场的密度、速度和温度分布

    Figure  1.  Density, velocity and temperature distribution of one-dimensional equilibrium flow field under different preheating conditions

    图  2  强、中和弱预热情况下的线性增长率

    Figure  2.  Linear growth rate under strong, medium and weak preheating

    图  3  不同预热情况下$ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $$ {\lambda }_{2}=40\;{\text{μ}}\rm{m} $双模扰动所激发的谐波的密度幅值随时间的演化

    Figure  3.  Temporal evolution of the density amplitude of harmonics excited by the coupling of two modes (short-and long-wavelength $ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $ and $ {\lambda }_{2}=40\;{\text{μ}}\rm{m} $) in different preheating cases

    图  4  不同预热情况下$ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $$ {\lambda }_{2}=40\;{\text{μ}}\rm{m} $双模扰动下在t=7.5 ns时的密度等值线

    Figure  4.  Density contours for $ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $ and $ {\lambda }_{2}=40\;{\text{μ}}\rm{m} $ mode coupling under different preheating at t=7.5 ns

    图  5  不同预热情况下$ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $$ {\lambda }_{2}=12\;{\text{μ}}\rm{m} $双模扰动所激发的谐波的密度幅值随时间的演化

    Figure  5.  Temporal evolution of the density amplitude of harmonics excited by the coupling of two short-wavelength modes ($ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $ and $ {\lambda }_{2}=12\;{\text{μ}}\rm{m} $) in different preheating cases

    图  6  不同预热情况下$ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $$ {\lambda }_{2}=12\;{\text{μ}}\rm{m} $双模扰动下在t=7.5 ns时的密度等值线

    Figure  6.  Density contours for $ {\lambda }_{1}=10\;{\text{μ}}\rm{m} $ and $ {\lambda }_{2}=12\;{\text{μ}}\rm{m} $ mode coupling under different preheating at t=7.5 ns

    表  1  三种预热条件的参数设置

    Table  1.   Parameter settings of strong, medium and weak preheating conditions

    casebc
    strong preheating (SP)8.61.6
    moderate preheating (MP)20.4
    weak preheating (WP)0.860.24
    下载: 导出CSV
  • [1] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 201(1065): 192-196.
    [2] Strutt J W. ART. 100—Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[M]//Strutt J W. Scientific Papers. Cambridge: Cambridge University Press, 1900: 200-207.
    [3] Sharp D H. An overview of Rayleigh-Taylor instability[J]. Physica D: Nonlinear Phenomena, 1984, 12(1/3): 3-18.
    [4] Bodner S E. Rayleigh-Taylor instability and laser-pellet fusion[J]. Physical Review Letters, 1974, 33(13): 761-764. doi: 10.1103/PhysRevLett.33.761
    [5] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) application[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [6] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [7] Takabe H, Mima K, Montierth L, et al. Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma[J]. Physics of Fluids, 1985, 28(12): 3676. doi: 10.1063/1.865099
    [8] Sanz J. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion[J]. Physical Review E, 1996, 53(4): 4026-4045. doi: 10.1103/PhysRevE.53.4026
    [9] Roberts M S, Jacobs J W. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh-Taylor instability[J]. Journal of Fluid Mechanics, 2016, 787: 50-83. doi: 10.1017/jfm.2015.599
    [10] Zhang H, Betti R, Gopalaswamy V, et al. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers[J]. Physical Review E, 2018, 97: 011203. doi: 10.1103/PhysRevE.97.011203
    [11] Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Physics of Plasmas, 2019, 26: 022710. doi: 10.1063/1.5079316
    [12] Qiao Xiumei, Lan Ke. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion[J]. Physical Review Letters, 2021, 126: 185001. doi: 10.1103/PhysRevLett.126.185001
    [13] Bud’ko A B, Liberman M A. Stabilization of the Rayleigh-Taylor instability by convection in smooth density gradient: Wentzel-Kramers-Brillouin analysis[J]. Physics of Fluids B: Plasma Physics, 1992, 4(11): 3499-3506. doi: 10.1063/1.860357
    [14] Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5(5): 1446-1454. doi: 10.1063/1.872802
    [15] Lewis D J. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 202(1068): 81-96.
    [16] Birkhoff G. Taylor instability and laminar mixing[R]. Los Alamos: Las Alamos Scientific Lab. , 1954.
    [17] Birkhoff G, Bellman R, Lin C C. Hydrodynamic instability[M]. New York: Am. Math. Soc. , 1962: 55-76.
    [18] 张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变内爆流体不稳定性研究[J]. 中国科学:物理学 力学 天文学, 2014, 44(1):1-23. (Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(1): 1-23

    Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(1): 1-23
    [19] Ye Wenhua, Zhang Weiyan, He Xiantu. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Physical Review E, 2002, 65: 057401. doi: 10.1103/PhysRevE.65.057401
    [20] 叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式[J]. 物理学报, 2000, 49(4):762-767. (Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 2000, 49(4): 762-767 doi: 10.3321/j.issn:1000-3290.2000.04.032

    Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 2000, 49(4): 762-767 doi: 10.3321/j.issn:1000-3290.2000.04.032
    [21] Xia Hua, Shats M G. Spectral energy transfer and generation of turbulent structures in toroidal plasma[J]. Physics of Plasmas, 2004, 11(2): 561-571. doi: 10.1063/1.1637607
    [22] Wang Lifeng, Ye Wenhua, Li Yingjun. Interface width effect on the classical Rayleigh–Taylor instability in the weakly nonlinear regime[J]. Physics of Plasmas, 2010, 17: 052305. doi: 10.1063/1.3396369
    [23] Garnier J, Raviart P A, Cherfils-Clérouin C, et al. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability[J]. Physical Review Letters, 2003, 90: 185003. doi: 10.1103/PhysRevLett.90.185003
    [24] Verdon C P, McCrory R L, Morse R L, et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells[J]. Physics of Fluids, 1982, 25(9): 1653-1674. doi: 10.1063/1.863925
    [25] Dahlburg J P, Gardner J H. Ablative Rayleigh-Taylor instability in three dimensions[J]. Physical Review A, 1990, 41(10): 5695-5698. doi: 10.1103/PhysRevA.41.5695
    [26] Xin Jingfei, Yan Rui, Wan Zhenhua, et al. Two mode coupling of the ablative Rayleigh-Taylor instabilities[J]. Physics of Plasmas, 2019, 26: 032703. doi: 10.1063/1.5070103
    [27] Hasegawa S, Nishihara K. Mode coupling theory in ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 1995, 2(12): 4606-4616. doi: 10.1063/1.870950
    [28] Ye Wenhua, Wang Lifeng, He Xiantu. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2010, 17: 122704. doi: 10.1063/1.3497006
    [29] Fan Zhengfeng, Luo Jisheng, Ye Wenhua. Compressible Rayleigh-Taylor instability with preheat in inertial confinement fusion[J]. Chinese Physics Letters, 2007, 24(8): 2308-2311. doi: 10.1088/0256-307X/24/8/042
    [30] Wang Lifeng, Ye Wenhua, He Xiantu. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2012, 19: 012706. doi: 10.1063/1.3677821
    [31] 王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001. (Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173

    Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  48
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回