留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相对论电子束的太赫兹源

颜立新 刘卓辕

颜立新, 刘卓辕. 基于相对论电子束的太赫兹源[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220134
引用本文: 颜立新, 刘卓辕. 基于相对论电子束的太赫兹源[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220134
Yan Lixin, Liu Zhuoyuan. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220134
Citation: Yan Lixin, Liu Zhuoyuan. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220134

基于相对论电子束的太赫兹源

doi: 10.11884/HPLPB202234.220134
基金项目: 国家自然科学基金项目(11835004)
详细信息
    作者简介:

    颜立新,yanlx@mail.tsinghua.edu.cn

  • 中图分类号: TN248.6

Terahertz source based on relativistic electron beams

  • 摘要: 太赫兹辐射在基础科学和产业应用中具有重要的应用前景,但传统的电子学和光学方法难以在1~10 THz产生相干的高功率、窄带且连续可调的太赫兹辐射。基于相对论性超短电子束和预调制电子束序列的加速器太赫兹源将能在上述范围内产生可调的高能谱强度窄带太赫兹辐射。综述了清华大学加速器实验室近年来在基于相对论电子束的加速器太赫兹源方面的理论和实验进展,以及与加速器太赫兹源一起发展起来的太赫兹辐射测量、束流诊断和先进加速技术。
  • 图  1  高斯分布超短电子束的形状因子

    Figure  1.  Form factor of ultrashort electron beams with Gaussian distribution

    图  2  单束团50 fs的电子束序列形状因子

    Figure  2.  Form factor of electron micro-bunch trains with 50 fs micro-bunch length

    图  3  TTX束线布局图[23]

    Figure  3.  Layout of TTX beamline

    图  4  THz新束线装置图

    Figure  4.  Setup of THz new beamline

    图  5  THz新束线照片

    Figure  5.  Photo of THz new beamline

    图  6  非线性空间电荷振荡产生电子束序列结果[36]

    Figure  6.  Experimental result of THz electron bunch train generation by nonlinear space charge oscillation[36]

    图  7  分段中空等离子体调制产生电子束序列的模拟计算结果[38]

    Figure  7.  Simulation results of THz electron bunch train generation by segmented hollow plasma channels[38]

    图  8  切片能散调制产生太赫兹电子束序列示意图[39]

    Figure  8.  Schematic layout of THz electron bunch train generation by slice energy spread modulation[39]

    图  9  THz电子束团串的相干Smith-Purcell辐射(cSPr)和相干渡越辐射频谱[41]

    Figure  9.  Spectrums of coherent Smith-Purcell radiation and coherent transition radiation emitted by THz electron bunch train[41]

    图  10  相干Smith-Purcell辐射前三阶谐波分量测量结果[42]

    Figure  10.  Measurement results of first three harmonics of coherent Smith-Purcell radiation[42]

    图  11  波荡器辐射的频谱测量结果[44]

    Figure  11.  Spectrum measurement of undulator radiation[44]

    图  12  电子束激发介质管太赫兹尾场的实验装置图[46]

    Figure  12.  Experimental setup of THz wakefield generation by electron beam[46]

    图  13  电子束束团rms长度为60 µm时两个不同介质管内激励的TM01和TM02模式[46]

    Figure  13.  TM01 and TM02 mode excited in two different dielectric tubes by an electron beam with rms length 60 µm[46]

    图  14  太赫兹辐射测量[51]

    Figure  14.  THz measurement setup[51]

    图  15  EO空间解码测量装置示意图[53]

    Figure  15.  Schematic of the EO spatial decoding detection[53]

    图  16  EO空间解码测量得到的CTR辐射时空间分布及与延迟扫描EO采样方法的对比(Scanning EOS)[53]

    Figure  16.  Comparison of the measured spatial-temporal distribution of CTR by EO spatial decoding and scanning EOS[53]

    图  17  电光空间解码测量的电子束到达时间抖动[53]

    Figure  17.  The measured electron beam arrival time jitter in EO spatial decoding detection[53]

    图  18  利用双电子束尾场干涉法控制太赫兹尾场加速相位[62]

    Figure  18.  Phase control with two-beam interferometry method in a terahertz dielectric wakefield accelerator[62]

    图  19  THz级联加速实验布局图[65]

    Figure  19.  Experimental setup of cascaded THz acceleration[65]

    图  20  THz级联加速典型实验结果[65]

    Figure  20.  Experimental results of cascaded terahertz electron acceleration[65]

    表  1  太赫兹电子束序列的实验结果对比

    Table  1.   Comparison of experimental results of THz electron micro-bunch trains

    published articleaffiliationbunch charge/pCtuning range/THzbunching factor
    PRL 101, 054801 (2008)BNL~500.70~1.40
    PRL 105, 234801 (2010)FERMI~150.37~0.86
    PRL 106, 184801 (2011)UCLA~221.00~0.20
    PRL 107, 204801 (2011)BNL~1000.26~2.60
    PRL 109, 074801 (2012)SLAC~4012.00~17.00~0.02
    PRL 108, 144801 (2012)
    PRL 111, 134802 (2013)
    ANL~1000.68~0.90
    PRL122, 044801 (2019)DESY~11000.19~0.30~0.20
    PRL 116, 184801 (2016)THU~7000.60~1.60~0.20
    下载: 导出CSV
  • [1] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 2013, 7(9): 680-690. doi: 10.1038/nphoton.2013.184
    [2] Basov D N, Averitt R D, Hsieh D. Towards properties on demand in quantum materials[J]. Nature Materials, 2017, 16(11): 1077-1088. doi: 10.1038/nmat5017
    [3] Baierl S, Hohenleutner M, Kampfrath T, et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 2016, 10(11): 715-718. doi: 10.1038/nphoton.2016.181
    [4] Jin Zuanming, Tkach A, Casper F, et al. Accessing the fundamentals of magnetotransport in metals with terahertz probes[J]. Nature Physics, 2015, 11(9): 761-766. doi: 10.1038/nphys3384
    [5] Fleischer S, Zhou Yan, Field R W, et al. Molecular orientation and alignment by intense single-cycle THz pulses[J]. Physical Review Letters, 2011, 107: 163603. doi: 10.1103/PhysRevLett.107.163603
    [6] Lu Jian, Li Xian, Hwang H Y, et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves[J]. Physical Review Letters, 2017, 118: 207204. doi: 10.1103/PhysRevLett.118.207204
    [7] Zhang Xicheng, Xu Jingzhou. Introduction to THz wave photonics[M]. New York: Springer, 2010.
    [8] Horiuchi N. Bright terahertz sources[J]. Nature Photonics, 2013, 7(9): 670-671. doi: 10.1038/nphoton.2013.231
    [9] Wen Xiaodong, Huang Senlin, Lin Lin, et al. Superradiant THz undulator radiation source based on a superconducting photo-injector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820: 75-79.
    [10] Zhao Gang, Huang Senlin, Qin Weilun, et al. Tunable high-power terahertz free electron laser amplifier[C]//Proceedings of FEL. 2015: 305-307.
    [11] Zhao Gang, Zhao Sheng, Huang Senlin, et al. Strong electron density modulation with a low-power THz source for generating THz superradiant undulator radiation[J]. Physical Review Accelerators and Beams, 2019, 22: 060701. doi: 10.1103/PhysRevAccelBeams.22.060701
    [12] Zhu Juanfeng, Du Chaohai, Li Fanhong, et al. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure[J]. IEEE Access, 2019, 7: 181184-181190. doi: 10.1109/ACCESS.2019.2938270
    [13] Liang Linbo, Liu Weihao, Jia Qika, et al. Superimposed-harmonic Smith-Purcell free-electron lasers driven by periodic electron-bunches[J]. Physics of Plasmas, 2019, 26: 013102. doi: 10.1063/1.5064865
    [14] Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Generation of frequency-chirped density modulation electron beam for producing ultrashort THz radiation pulse[J]. Physical Review Accelerators and Beams, 2020, 23: 020704. doi: 10.1103/PhysRevAccelBeams.23.020704
    [15] Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Tuning electron bunch with a longitudinally shaped laser to generate half-cycle terahertz radiation pulse[J]. Journal of Instrumentation, 2021, 16: P08019. doi: 10.1088/1748-0221/16/08/P08019
    [16] Wu Dai, Li Ming, Yang Xinfan, et al. First lasing of the CAEP THz FEL facility driven by a superconducting accelerator[J]. Journal of Physics: Conference Series, 2018, 1067: 032010. doi: 10.1088/1742-6596/1067/3/032010
    [17] Wu Dai, Zhou K, Yan L G, et al. Design of high-repetition terahertz super-radiation based on CAEP THz FEL superconducting beamline[C]//Proceedings of the 39th Free Electron Laser Conference. 2019: 73-76.
    [18] Liu Xu, Liu Kaifeng, Qin Bin, et al. Optical alignment and tuning system for the HUST THz-FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 837: 58-62.
    [19] Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102
    [20] Svidzinsky A A, Yuan Luqi, Scully M O. Quantum amplification by superradiant emission of radiation[J]. Physical Review X, 2013, 3: 041001.
    [21] Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 1954, 93(1): 99-110. doi: 10.1103/PhysRev.93.99
    [22] Gover A, Ianconescu R, Friedman A, et al. Superradiant and stimulated-superradiant emission of bunched electron beams[J]. Reviews of Modern Physics, 2019, 91: 035003. doi: 10.1103/RevModPhys.91.035003
    [23] Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(1): S70-S74.
    [24] Wang Dan, Yan Lixin, Du Yingchao, et al. Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching[J]. Review of Scientific Instruments, 2013, 84: 022704. doi: 10.1063/1.4790430
    [25] Yan Lixin, Du Qiang, Du Yingchao, et al. UV pulse shaping for the photocathode RF gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637(1): S127-S129.
    [26] Weling A S, Auston D H. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space[J]. Journal of the Optical Society of America B, 1996, 13(12): 2783-2792. doi: 10.1364/JOSAB.13.002783
    [27] Siders C W, Siders J L W, Taylor A J, et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 1998, 37(22): 5302-5305. doi: 10.1364/AO.37.005302
    [28] Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches[J]. Journal of Plasma Physics, 2012, 78(s4): 429-431.
    [29] Yan Lixin, Du Qiang, Du Yingchao, et al. Ultrashort electron bunch train production by UV laser pulse stacking[C]//Proceedings of 1st International Particle Accelerator Conference. 2010: 3210-3212.
    [30] You Yan, Yan Lixin, Du Yingchao, et al. High power THz source based on coherent radiation of picosecond relativistic electron bunch train[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 197-200.
    [31] Su Xiaolu, Wang Dan, Yan Lixin, et al. Measurement of pre-bunched beam’s longitudinal form factor based on radiation from a tunable-gap undulator[J]. Review of Scientific Instruments, 2018, 89: 013304. doi: 10.1063/1.5010031
    [32] Wang Dan, Yan Lixin, Du Yingchao, et al. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train[J]. Physical Review Accelerators and Beams, 2018, 21: 024403. doi: 10.1103/PhysRevAccelBeams.21.024403
    [33] Wang Dan, Zhang Hongze, Tian Qili, et al. Twin-bunch compression via velocity bunching in a traveling wave accelerator[J]. Physical Review Accelerators and Beams, 2018, 21: 084403. doi: 10.1103/PhysRevAccelBeams.21.084403
    [34] Musumeci P, Li Renkai, Marinelli A. Nonlinear longitudinal space charge oscillations in relativistic electron beams[J]. Physical Review Letters, 2011, 106: 184801. doi: 10.1103/PhysRevLett.106.184801
    [35] Musumeci P, Li Renkai, Roberts K G, et al. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 100701. doi: 10.1103/PhysRevSTAB.16.100701
    [36] Zhang Zhen, Yan Lixin, Du Yingchao, et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation[J]. Physical Review Letters, 2016, 116: 184801. doi: 10.1103/PhysRevLett.116.184801
    [37] Feng Hanqi, Zhou Zheng, Wu Yipeng, et al. Generation of tunable 10-mJ-level terahertz pulses through nonlinear plasma wakefield modulation[J]. Physical Review Applied, 2021, 15: 044032. doi: 10.1103/PhysRevApplied.15.044032
    [38] Feng Hanqi, Yan Lixin, Wu Yipeng, et al. Near-ideal energy modulator for tunable THz pulse generation using sectioned hollow channel plasma system[J]. Physics of Plasmas, 2021, 28: 103101. doi: 10.1063/5.0062371
    [39] Zhang Zhen, Yan Lixin, Du Yingchao, et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam[J]. Physical Review Accelerators and Beams, 2017, 20: 050701. doi: 10.1103/PhysRevAccelBeams.20.050701
    [40] Gover A, Sprangle P. A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers[J]. IEEE Journal of Quantum Electronics, 1981, 17(7): 1196-1215. doi: 10.1109/JQE.1981.1071257
    [41] Liang Yifan, Du Yingchao, Su Xiaolu, et al. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams[J]. Applied Physics Letters, 2018, 112: 053501. doi: 10.1063/1.5009396
    [42] Liang Yifan, Du Yingchao, Wang Dan, et al. Selective excitation and control of coherent terahertz Smith-Purcell radiation by high-intensity period-tunable train of electron micro-bunches[J]. Applied Physics Letters, 2018, 113: 171104. doi: 10.1063/1.5054583
    [43] Su Xiaolu, Yan Lixin, Wang Dan, et al. Recent experimental results on high-peak-current electron bunch and bunch trains interacting with a THz undulator[C]//Proceedings of the 38th International Free Electron Laser Conference. 2017: 474-476.
    [44] Su Xiaolu, Wang Dan, Tian Qili, et al. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU[J]. Journal of Instrumentation, 2018, 13: C01020. doi: 10.1088/1748-0221/13/01/C01020
    [45] Antipov S, Baryshev S V, Kostin R, et al. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide[J]. Applied Physics Letters, 2016, 109: 142901. doi: 10.1063/1.4963762
    [46] Wang Dan, Su Xiaolu, Du Yingchao, et al. Non-perturbing THz generation at the Tsinghua University Accelerator Laboratory 31 MeV electron beamline[J]. Review of Scientific Instruments, 2018, 89: 093301. doi: 10.1063/1.5042006
    [47] Wang Dan, Su Xiaolu, Tian Qili, et al. Preliminary results on the resonant excitation of THz wakefield in a multi-mode dielectric loaded waveguide by bunch train[C]//Proceedings of IPAC. 2017: 3426-3428.
    [48] Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 2022, 16(6): 441-447. doi: 10.1038/s41566-022-00995-z
    [49] Yu Zijia, Zhang Liwen, Liu Weihao, et al. Coherent terahertz emission using metasurfaces to intercept a flat electron beam[J]. Physical Review Applied, 2022, 17: 014038. doi: 10.1103/PhysRevApplied.17.014038
    [50] Kaminer I, Kooi S E, Shiloh R, et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder[J]. Physical Review X, 2017, 7: 011003.
    [51] Liu Wenxin, Huang Wenhui, Du Yingchao, et al. Terahertz coherent transition radiation based on an ultrashort electron bunching beam[J]. Chinese Physics B, 2011, 20: 074102. doi: 10.1088/1674-1056/20/7/074102
    [52] Wang Wei, Du Yingchao, Yan Lixin, et al. Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches[J]. Physical Review Accelerators and Beams, 2017, 20: 112801. doi: 10.1103/PhysRevAccelBeams.20.112801
    [53] Tian Qili, Du Yingchao, Xu Hanxun, et al. Single-shot spatial-temporal electric field measurement of intense terahertz pulses from coherent transition radiation[J]. Physical Review Accelerators and Beams, 2020, 23: 102802. doi: 10.1103/PhysRevAccelBeams.23.102802
    [54] Li Qian, Stoica V A, Paściak M, et al. Subterahertz collective dynamics of polar vortices[J]. Nature, 2021, 592(7854): 376-380. doi: 10.1038/s41586-021-03342-4
    [55] Disa A S, Nova T F, Cavalleri A. Engineering crystal structures with light[J]. Nature Physics, 2021, 17(10): 1087-1092. doi: 10.1038/s41567-021-01366-1
    [56] Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019, 15(4): 387-392. doi: 10.1038/s41567-018-0408-1
    [57] Baldini E, Belvin C A, Rodriguez-Vega M, et al. Discovery of the soft electronic modes of the trimeron order in magnetite[J]. Nature Physics, 2020, 16(5): 541-545. doi: 10.1038/s41567-020-0823-y
    [58] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
    [59] Kurihara T, Watanabe H, Nakajima M, et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field[J]. Physical Review Letters, 2018, 120: 107202. doi: 10.1103/PhysRevLett.120.107202
    [60] Maag T, Bayer A, Baierl S, et al. Coherent cyclotron motion beyond Kohn’s theorem[J]. Nature Physics, 2016, 12(2): 119-123. doi: 10.1038/nphys3559
    [61] Su Xiaolu, Yan Lixin, Du Yingchao, et al. Monitoring of electron bunch length by using Terahertz coherent transition radiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 402: 157-161. doi: 10.1016/j.nimb.2017.03.016
    [62] Wang Dan, Su Xiaolu, Yan Lixin, et al. Phase control with two-beam interferometry method in a terahertz dielectric Wakefield accelerator[J]. Applied Physics Letters, 2017, 111: 174102. doi: 10.1063/1.4999959
    [63] Hanuka A, Emma C, Maxwell T, et al. Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics[J]. Scientific Reports, 2021, 11: 2945. doi: 10.1038/s41598-021-82473-0
    [64] Konoplev I V, Doucas G, Harrison H, et al. Single shot, nondestructive monitor for longitudinal subpicosecond bunch profile measurements with femtosecond resolution[J]. Physical Review Accelerators and Beams, 2021, 24: 022801. doi: 10.1103/PhysRevAccelBeams.24.022801
    [65] Xu Hanxun, Yan Lixin, Du Yingchao, et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 2021, 15(6): 426-430. doi: 10.1038/s41566-021-00779-x
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-07-07

目录

    /

    返回文章
    返回