留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

束内散射效应下HALF储存环物理参数的优化设计

罗楚文 刘刚文 李伟伟 胡楠 李为民 白正贺 王琳

罗楚文, 刘刚文, 李伟伟, 等. 束内散射效应下HALF储存环物理参数的优化设计[J]. 强激光与粒子束, 2022, 34: 104005. doi: 10.11884/HPLPB202234.220140
引用本文: 罗楚文, 刘刚文, 李伟伟, 等. 束内散射效应下HALF储存环物理参数的优化设计[J]. 强激光与粒子束, 2022, 34: 104005. doi: 10.11884/HPLPB202234.220140
Luo Chuwen, Liu Gangwen, Li Weiwei, et al. Parameters optimization considering intra-beam scattering in HALF lattice design[J]. High Power Laser and Particle Beams, 2022, 34: 104005. doi: 10.11884/HPLPB202234.220140
Citation: Luo Chuwen, Liu Gangwen, Li Weiwei, et al. Parameters optimization considering intra-beam scattering in HALF lattice design[J]. High Power Laser and Particle Beams, 2022, 34: 104005. doi: 10.11884/HPLPB202234.220140

束内散射效应下HALF储存环物理参数的优化设计

doi: 10.11884/HPLPB202234.220140
基金项目: 国家重点研发计划项目(2016Y-FA0402000);国家自然科学基金青年科学基金项目(12005226);国家自然科学基金面上项目(11475167)
详细信息
    作者简介:

    罗楚文,lcw038@mail.ustc.edu.cn

    通讯作者:

    王 琳,wanglin@ustc.edu.cn

  • 中图分类号: TL503

Parameters optimization considering intra-beam scattering in HALF lattice design

  • 摘要: 合肥先进光源(HALF)是我国规划建设的软X射线与VUV衍射极限储存环光源(DLSR)。如何有效地实现衍射极限束流发射度,是DLSR物理设计中的核心问题之一。基于束流发射度演化方程,针对HALF预研项目的储存环物理设计方案,计算了束内散射(IBS)效应带来的发射度增长,研究了DLSR中关键参数选择对IBS造成的发射度增长的影响。研究表明,在中低能DLSR物理设计中需要综合考虑储存环的周长、同步辐射阻尼时间等关键参数,以更好地抑制束流发射度的增长。在此研究基础上,通过综合考虑用户需求与储存环物理要求,提出了HALF当前工程项目的储存环物理设计方案。进一步综合应用束团拉伸、全耦合等措施后,更高效地抑制了HALF储存环内IBS造成的束流发射度增长。
  • 图  1  7BA储存环一个周期的磁聚焦结构及线性光学参数

    Figure  1.  Magnet layout and linear optical functions of one period 7BA lattice

    图  2  发射度及发射度增长率随自然发射度的变化

    Figure  2.  Change of emittance and emittance growth rate with natural emittance

    图  3  平衡发射度随同步辐射阻尼时间的变化

    Figure  3.  Equilibrium emittance vs SR damping time

    图  4  储存环周长参数的优化

    Figure  4.  Parameter optimization of storage ring circumference

    图  5  6BA储存环一个周期的磁聚焦结构及线性光学参数

    Figure  5.  Magnet layout and linear optical functions of one period 6BAlattice

    图  6  能散及水平方向平衡发射度随束流流强的变化

    Figure  6.  Change of energy spread and horizontal emittance with beam current

    表  1  7BA储存环主要设计参数

    Table  1.   Main parameters of the 7BA storage ring

    parametervalue
    beam energy2.4 GeV
    circumference672 m
    natural emittance24.7 pm·rad
    tune (H, V)71.30, 23.30
    natural chromaticity (H, V)−97, −110
    momentum compaction factor5×10−5
    natural energy spread7.97×10−4
    natural damping time (H, V, L)(37.7,58.8,40.8) ms
    energy loss per turn182.9 keV
    RF frequency500 MHz
    下载: 导出CSV

    表  2  HALF储存环IBS效应影响下平衡发射度

    Table  2.   Equilibrium emittance of the storage ring under IBS effects

    $ \kappa /\mathrm{{\text{%}}} $$ {\varepsilon }_{0} $/(pm·rad)$ \mathrm{\varepsilon } $/(pm·rad)$ {\sigma }_{\mathrm{p}0}/{10}^{-4} $$ {\sigma }_{\mathrm{p}}/{10}^{-4} $$ {\varepsilon }_{{x}0} $/(pm·rad)$ {\varepsilon }_{{x}} $/(pm·rad)$ ({\varepsilon }_{{x}}-{\varepsilon }_{{x}0})/{\varepsilon }_{{x}0} $
    1024.798.47.9711.523.292.52.99
    10024.777.77.9710.515.047.32.15
    下载: 导出CSV

    表  3  6BA储存环主要设计参数

    Table  3.   Main parameters of the 6BA storage ring

    parametervalue
    beam energy2.2 GeV
    circumference480 m
    natural emittance85.1 pm·rad
    tune (H, V)48.175,17.175
    natural chromaticity (H, V)−75, −59
    momentum compaction factor6.3×10−5
    natural energy spread6.6×10−4
    damping time (H, V, L)(22, 32.4, 21.2) ms
    energy loss per turn217.5 keV
    RF frequency500 MHz
    下载: 导出CSV

    表  4  HALF储存环在IBS效应影响下平衡发射度

    Table  4.   Equilibrium emittance of the HALF storage ring under IBS effects

    $ \kappa /\mathrm{{\text{%}}} $$ {\varepsilon }_{0} $/(pm·rad)$ \mathrm{\varepsilon } $/(pm·rad)$ {\sigma }_{\mathrm{p}0}/{10}^{-4} $$ {\sigma }_{\mathrm{p}}/{10}^{-4} $$ {\varepsilon }_{x0} $/(pm·rad)$ {\varepsilon }_{x} $/(pm·rad)$ ({\varepsilon }_{x}-{\varepsilon }_{x0})/{\varepsilon }_{x0} $
    1085.1185.46.69.1979.6173.41.178
    10085.1153.46.68.3550.290.50.803
    下载: 导出CSV

    表  5  HALF储存环在IBS效应影响下平衡发射度

    Table  5.   Equilibrium emittance of the HALF storage ring under IBS effects

    $ \kappa /\mathrm{{\text{%}}} $$ {\varepsilon }_{0} $/(pm·rad)$ \mathrm{\varepsilon } $/(pm·rad)$ {\sigma }_{\mathrm{p}0}/{10}^{-4} $$ {\sigma }_{\mathrm{p}}/{10}^{-4} $$ {\varepsilon }_{x0} $/(pm·rad)$ {\varepsilon }_{x} $/(pm·rad)$ ({\varepsilon }_{x}-{\varepsilon }_{x0})/{\varepsilon }_{x0} $
    1084.21296.947.9878.5120.30.53
    10084.2110.56.947.5648.663.80.31
    下载: 导出CSV
  • [1] Wang Dong. Overview of light source developments in Asia/Oceania[C]//Proceedings ofIPAC 2019. Melbourne, 2019.
    [2] Einfeld D. World-wide upgrades overview new DLSR projects[C]//Proceedings of Workshop on Coherence Light Source. Hefei, 2019.
    [3] Bei M, Borland M, Cai Y, et al. The potential of an ultimate storage ring for future light sources[J]. NuclInstrum Methods Phys Res A, 2010, 622(3): 518-535. doi: 10.1016/j.nima.2010.01.045
    [4] Hettel R. DLSR design and plans: an international overview[J]. J Synchrotron Radiat, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [5] Wang Lin. Diffraction limited storage ring: technical challenges and opportunities[R]. Sanpu, Beijing, 2019.
    [6] Dimper R, Reichert H, Raimondi P, et al. ESRF upgrade programme phase II (2015 - 2022) technical design study[R]. France: ESRF, 2014.
    [7] FornekT E. Advanced photon source upgrade project final design report[R]. Washington: USDOE Office of Science, 2019.
    [8] Liu Lin, Milas N, Mukai A H C, et al. The Sirius project[J]. JSynchrotron Radiat, 2014, 21(5): 904-911. doi: 10.1107/S1600577514011928
    [9] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. JSynchrotron Radiat, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
    [10] Wang Lin, Bai Zhenghe, Nan Hu, et al. Hefei Advanced Light Source: a future soft X-ray diffraction-limited storage ring at NSRL[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver: IPAC, 2018.
    [11] Borland M, Decker G, Emery L, et al. Lattice design challenges for fourth-generation storage-ring light sources[J]. J Synchrotron Radiat, 2014, 21(5): 912-936. doi: 10.1107/S1600577514015203
    [12] 焦毅, 徐刚, 陈森玉, 等. 衍射极限储存环物理设计研究进展[J]. 强激光与粒子束, 2015, 27:045108 doi: 10.11884/HPLPB201527.045108

    Jiao Yi, Xu Gang, Chen Senyu, et al. Advances in physical design of diffraction-limited storage ring[J]. High Power Laser and Particle Beams, 2015, 27: 045108 doi: 10.11884/HPLPB201527.045108
    [13] Vivoli A, Bence A, Brunelle P, et al. Intra-beam scattering effect in the SOLEIL storage ring upgrade[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne: IPAC, 2019.
    [14] Fan Wei, Wang Lin, et a1. Emittance growth estimmion due to intrabeam scattering in Hefei Advanced Light Source (HALS) Storage Ring[C]//Proceedings of IPAC10. 2010.
    [15] Cai Yunhai, Bane K, Hettel R, et al. Ultimate storage ring based on fourth-order geometric achromats[J]. Phys Rev ST Accel Beams, 2012, 15: 054002. doi: 10.1103/PhysRevSTAB.15.054002
    [16] 刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009: 7

    Liu Zuping. Introduction of synchrotron radiation light source physics[M]. Hefei: University of Science and Technology of China Press, 2009: 7
    [17] Piwinski A. Intra-beam-scattering[C]//Proceedings of the 9th International Conference on High Energy Accelerators. Stanford: SLAC, 1974: 405-409.
    [18] Bjorken J D, Mtingwa S K. Intrabeam scattering[J]. Part Accel, 1983, 13: 115-143.
    [19] Bane K L F. A simplified model of intrabeam scattering[C]//Proceedings of EPAC 2002. Paris: EPAC, 2002: 1443-1445.
    [20] Bai Zhenghe, Li Wei, Liu Gangwen, et al. Study of seven-bend achromat lattices with interleaved dispersion bumps for HALS[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne: IPAC, 2019.
    [21] 合肥先进光源项目建议书[R]. 合肥: 中国科学技术大学国家同步辐射实验室, 2020

    Hefei Advanced Light Source project proposal[R]. Hefei: University of Science and Technology of China, National Synchrotron Radiation Laboratory, 2020
    [22] Bassi G, Tagger J. Longitudinal beam dynamics with a higher-harmonic cavity for bunch lengthening[J]. Int J Mod Phys A, 2019, 34: 1942040. doi: 10.1142/S0217751X19420405
    [23] Murphy J. Synchrotron light source data book: version 1.0[R]. Upton: Brookhaven National Laboratory, 1989: 28-37.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  428
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-19
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回