留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地闪通道底部回击速度的频变特性分析

厉燚翀 罗小军 张琪 邱实 石立华

厉燚翀, 罗小军, 张琪, 等. 地闪通道底部回击速度的频变特性分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220185
引用本文: 厉燚翀, 罗小军, 张琪, 等. 地闪通道底部回击速度的频变特性分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220185
Li Yichong, Luo Xiaojun, Zhang Qi, et al. Analysis on variation of return stroke velocity with frequency at the channel bottom of cloud to ground lightning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220185
Citation: Li Yichong, Luo Xiaojun, Zhang Qi, et al. Analysis on variation of return stroke velocity with frequency at the channel bottom of cloud to ground lightning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220185

地闪通道底部回击速度的频变特性分析

doi: 10.11884/HPLPB202234.220185
基金项目: 国家自然科学基金项目(51977219)
详细信息
    作者简介:

    厉燚翀,474170282@qq.com

    通讯作者:

    石立华,shilih@tom.com

  • 中图分类号: O441.6

Analysis on variation of return stroke velocity with frequency at the channel bottom of cloud to ground lightning

  • 摘要: 回击通道的光学观测对于研究回击发展过程和物理机制、完善工程回击模型都具有重要的意义。采用雷电发展过程高速光学观测系统(LiPOS)测量了人工引雷中距离通道底部21 m至309 m的一组通道发光波形,基于系统辨识的输出误差(OE)模型建立了回击向上传播过程光辐射脉冲间的传递函数,获得了1 kHz~1 MHz频段内群速度和相速度曲线。时域分析表明,通道辐射光脉冲波形前沿上升时间由靠近底部的1.1 μs变化为309 m高度处的1.84 μs,色散特性是其变化的重要原因。频域分析表明,OE模型能够有效抑制测量噪声的影响、获得清晰的分析曲线,100 kHz以下低频段内群速度呈显著的非单调变化,500 kHz以上区域群速度稳定在58%光速左右。将分析结果与相关文献的研究进行了对比和讨论。研究结果对于定量评价回击电流传播色散特性具有重要参考价值。
  • 图  1  LiPOS系统组成及实验设置

    Figure  1.  Components of LiPOS and experimental setup

    图  2  人工引雷通道底部光学观测记录

    Figure  2.  Optically observed records in the channel bottom of an artificially triggered lightning

    图  3  S5-S8的OE建模结果

    Figure  3.  Result of OE model for S5-S8

    图  4  OE建模获得的相速度和群速度

    Figure  4.  Phase and Group velocity obtained from OE model

    图  5  S5~S8的频谱密度分布

    Figure  5.  Spectrum density of channel S5~S8

    图  6  采用Heidler函数对文献[16]波形的拟合结果

    Figure  6.  Waveforms in [16] by Heidler function fitting

    图  7  OE方法处理结果与文献[16]结果的比较

    Figure  7.  Comparison of the results obtained by OE modeling with the curves given in [16]

    图  8  由图6波形计算得到的群速度和相速度曲线

    Figure  8.  Groupe velocity and phase velocities calculated from the waveforms given in Fig.6

    表  1  S5~S8的前沿上升时间

    Table  1.   Risetime of the waveforms of Channel S5~S8

    ChannelHeight (m)Rise Time (μs)
    S520.641.10
    S6116.641.32
    S7212.641.56
    S8308.641.84
    下载: 导出CSV

    表  2  不同传播高度对应的时域平均速度

    Table  2.   Risetime of the waveforms of Channel S5~S8

    IndicatorsTime Domain delay (μs)Time Domain speed (×108 m/s)
    Criterion10%50%Oblique
    Intercept
    10%50%Oblique
    Intercept
    S5-S6 0.52 0.52 0.50 1.85 1.85 1.92
    S5-S7 1.24 1.24 1.10 1.55 1.55 1.75
    S5-S8 1.98 2.18 1.86 1.45 1.32 1.55
    下载: 导出CSV
  • [1] Rakov V A. 雷电参数的工程应用[M]. 高燚, 杨少杰, 译. 北京: 气象出版社, 2019

    Rakov V A. Lightning parameters for engineering applications[M]. Gao Yi, Yang Shaojie, trans. Beijing: China Meteorological Press, 2019
    [2] Rakov V A, Uman M A. Review and evaluation of lightning return stroke models including some aspects of their application[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(4): 403-426. doi: 10.1109/15.736202
    [3] 田明宏, 盛松林, 魏光辉, 等. 雷电回击参数对回击电磁场计算的影响研究[J]. 强激光与粒子束, 2003, 15(6):599-603. (Tian Minghong, Sheng Songlin, Wei Guanghui, et al. Effects of several parameters on electromagnetic field of lightning return stroke[J]. High Power Laser and Particle Beams, 2003, 15(6): 599-603

    Tian Minghong, Sheng Songlin, Wei Guanghui, et al. Effects of several parameters on electromagnetic field of lightning return stroke[J]. High Power Laser and Particle Beams, 2003, 15(6): 599-603
    [4] 王宇, 谷山强, 孟刚, 等. 雷电定位系统反演地闪回击电流的准确度受回击速度取值的影响[J]. 高电压技术, 2021, 47(5):1617-1624. (Wang Yu, Gu Shanqiang, Meng Gang, et al. Effect of lightning return stroke speed on accuracy of inversed return stroke peak current using lightning location system[J]. High Voltage Engineering, 2021, 47(5): 1617-1624 doi: 10.13336/j.1003-6520.hve.20201094

    Wang Yu, Gu Shanqiang, Meng Gang, et al. Effect of lightning return stroke speed on accuracy of inversed return stroke peak current using lightning location system[J]. High Voltage Engineering, 2021, 47(5): 1617-1624 doi: 10.13336/j.1003-6520.hve.20201094
    [5] Idone V P, Orville R E. Lightning return stroke velocities in the thunderstorm research international program (TRIP)[J]. Journal of Geophysical Research: Oceans, 1982, 87(C7): 4903-4916. doi: 10.1029/JC087iC07p04903
    [6] Olsen III R C, Jordan D M, Rakov V A, et al. Observed one-dimensional return stroke propagation speeds in the bottom 170 m of a rocket-triggered lightning channel[J]. Geophysical Research Letters, 2004, 31: L16107. doi: 10.1029/2004GL020187
    [7] Mach D M, Rust W D. A photoelectric technique for measuring lightning-channel propagation velocities from a mobile laboratory[J]. Journal of Atmospheric and Oceanic Technology, 1989, 6(3): 440-445.
    [8] Liang C, Carlson B, Lehtinen N, et al. Differing current and optical return stroke speeds in lightning[J]. Geophysical Research Letters, 2014, 41(7): 2561-2567. doi: 10.1002/2014GL059703
    [9] Wang Daohong, Takagi N, Watanabe T, et al. A comparison of channel-base currents and optical signals for rocket-triggered lightning strokes[J]. Atmospheric Research, 2005, 76(1/4): 412-422.
    [10] Yang Gun, Yu Zhanqing, Zhang Yijun, et al. Evaluation of lightning current and return stroke velocity using measured far electric field above a horizontally stratified ground[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(6): 1940-1948. doi: 10.1109/TEMC.2017.2694554
    [11] Li Yun, Qiu Shi, Shi Lihua, et al. Observed variation of three-dimensional return stroke speeds along the channel in rocket-triggered lightning[J]. Geophysical Research Letters, 2018, 45(22): 12569-12575. doi: 10.1029/2018GL079783
    [12] Wang D, Takagi N, Gamerota W R, et al. Initiation processes of return strokes in rocket-triggered lightning[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(17): 9880-9888. doi: 10.1002/jgrd.50766
    [13] 刘国荣, 安婷婷, 万瑞斌, 等. 依据光谱研究闪电回击通道核心的特征参数[J]. 光谱学与光谱分析, 2021, 41(10):3269-3275. (Liu Guorong, An Tingting, Wan Ruibin, et al. Study on the characteristic parameters of lightning return stroke channel core based on spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3269-3275

    Liu Guorong, An Tingting, Wan Ruibin, et al. Study on the characteristic parameters of lightning return stroke channel core based on spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3269-3275
    [14] 李鹏, 郑毅, 韩超, 等. 基于光电二极管探测器的闪电光辐射信号观测[J]. 强激光与粒子束, 2011, 23(10):2625-2629. (Li Peng, Zheng Yi, Han Chao, et al. Observation of lightning optical signals with photodiode detector[J]. High Power Laser and Particle Beams, 2011, 23(10): 2625-2629 doi: 10.3788/HPLPB20112310.2625

    Li Peng, Zheng Yi, Han Chao, et al. Observation of lightning optical signals with photodiode detector[J]. High Power Laser and Particle Beams, 2011, 23(10): 2625-2629 doi: 10.3788/HPLPB20112310.2625
    [15] 贾晟, 李云, 孙征, 等. 雷电回击速度非单调变化对电场波形的影响分析[J]. 电波科学学报, 2020, 35(2):234-241. (Jia Sheng, Li Yun, Sun Zheng, et al. Impact of non-monotonic change of return stroke velocity on electric field waveform[J]. Chinese Journal of Radio Science, 2020, 35(2): 234-241 doi: 10.13443/j.cjors.2019051301

    Jia Sheng, Li Yun, Sun Zheng, et al. Impact of non-monotonic change of return stroke velocity on electric field waveform[J]. Chinese Journal of Radio Science, 2020, 35(2): 234-241 doi: 10.13443/j.cjors.2019051301
    [16] Carvalho F L, Uman M A, Jordan D M, et al. Frequency domain analysis of triggered lightning return stroke luminosity velocity[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2334-2350. doi: 10.1002/2016JD025863
    [17] Huang Liyang, Zhang Qi, Qiu Shi, et al. Development of a high-speed optical system for lightning flash observation[J]. Measurement, 2019, 131: 85-91. doi: 10.1016/j.measurement.2018.08.047
    [18] Jiang Zhidong, Zhou Bihua, Qiu Shi, et al. Time-domain calibration of the LEMP sensor and compensation for measured lightning electric field waveforms[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1172-1177. doi: 10.1109/TEMC.2014.2309616
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-03
  • 修回日期:  2022-07-30
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回