Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser
-
摘要: 为实现惯性约束聚变(ICF)内爆燃烧停滞阶段过程中最大压缩时刻的冷燃料面密度分布测量,设计了包含字母客体与针孔阵列的照相客体,通过同一发相同视角测量源分布与客体照相技术,首次建立了皮秒激光驱动的高能X射线源编码照相技术。通过星光III实验研究,基于W丝阵靶照相的反演图像空间分辨率5.4 μm±0.7 μm;激光到X射线(50~200 keV)的能量转换效率,W丝阵靶5.4×10−4,与传统Au单丝靶的转换效率(4.8×10−4)一致。基于源编码照相解决了传统皮秒激光背光照相中空间分辨率与光源亮度不能兼顾的困难,为强背景干扰下提供高信噪比、高分辨率的ICF靶丸压缩背光图像提供了重要照相方式。Abstract: To measure the areal density distribution of cold fuel at the maximum compression time during the stagnation phase of implosion in inertial confinement fusion (ICF), we have established the ps-laser driven high-energy X-ray radiography using source-coded technique. This paper describes the design and employment of the object including character-object and pinhole array. Based on the object, the source distribution and the object radiography was obtained at the same shot and same angle of view, and therefore the source-coded radiography of ps-laser driven X-ray has been established in experiments for the first time. From the experimental work on Xingguang-III facility, the spatial resolution of the inversion image with W wire-array target is 5.4 μm±0.7 μm. The efficiency of converting laser energy to high-energy bremsstrahlung (50−200 keV) is 5.4×10−4 in W wire-array target and 4.8×10−4 in Au single-wire target, respectively. It is possible that the the source-coded radiography of ps-laser driven X-ray in this work could account for overcoming the balance between spatial resolution and brightness in traditional X-ray backlight by ps-laser. The source-coded radiography provides an important method for ICF implosion backlight to get high resolution high signal-to-noise ratio images under the strong background.
-
Key words:
- inertial confinement fusion /
- ps laser /
- backlight /
- high-energy X-ray /
- spatial resolution
-
惯性约束聚变(ICF)、实验室天体物理中等离子体主要处于高能量密度(HED)状态,具有多物理过程、多时空尺度、强非线性、强关联起重要作用等特点,是当前科学研究中最具活力和挑战性的研究领域[1-7]。高能量密度物理研究中经常遇到质量密度剧烈变化而空间尺度很小的物理结构,如流体力学不稳定性发展后期产生的尖钉、空泡结构[4-5, 8-10],这些结构往往是物理过程的关键信息,也是验证三维模拟程序的重要方面,在实验上需提供离子温度、密度等高精度瞬态图像来验证模拟程序并优化聚变点火设计。此外,ICF等高能量密度物理过程的时间演化过程都十分短暂(数ns至百ns级),且每次实验的演化历程也很难完全相同,因此需要脉宽很短的X射线源作为背光源,或者较长脉宽的X射线背光源结合分幅相机,实现动态物理过程的瞬态时刻背光照相。ICF演化过程研究中,对内爆燃烧停滞阶段中的最大压缩时刻的冷燃料面密度分布测量十分关键,目前主要有下散射中子比测量[11]、皮秒激光高能X射线背光照相[12]两种测量技术,前者测量要求高的中子产额,而且只能获得某个方向上的面密度信息,后者要求背光源的光源亮度与照相空间分辨率都要达到很高要求,如分辨内爆压缩中的尖钉、空泡结构,需要空间分辨率优于3 μm[8]。基于皮秒激光产生X光源的光子能量普遍介于数keV至数MeV[13-24],脉宽介于数ps至数十ps[20, 22],为高能量密度物理领域、材料动力学领域等研究提供了高时间分辨、高穿透能力的背光照相探针[25-35]。诊断ICF内爆过程的皮秒激光高能X射线背光照相以美国国家点火装置(NIF)上开展的Compton照相为代表[20, 22, 24]。为获得高空间分辨,Compton照相中采用微丝靶,在Omega装置上开展了演示实验[22],并发展了新型成像探测器与新型高分辨成像技术[23-24]。近期美国NIF上开展的高能背光照相研究中,为避开黑腔产生的硬X射线干扰(光子能量普遍低于30 keV),基于先进照相能力(ARC)大能量皮秒激光束(单束能量1500 J,脉宽1~30 ps)开展了高能X射线(大于70 keV)的转换效率研究[20],获得了多个时刻的背光照相演化图像与面密度分布,并基于对称性假设,获得了靶丸质量密度分布、残余动能等物理信息,对靶丸压缩过程分析优化提供了重要实验参量[12, 36-37]。
为实现照相中的高空间分辨率,皮秒激光产生X射线背光照相基本采用了旗靶、微丝靶的微结构靶方式[12, 20-22, 37],通过限定旗靶的厚度或丝靶中丝直径来控制光源发射区域,照相实验中旗靶最小厚度5 μm,丝靶最小直径10 μm,对应照相空间分辨接近旗厚度[21]与丝直径[22]。旗靶仅能提供一维的高空间分辨,而丝靶采用更小直径丝时,激光利用效率很低,不能提供满足图像信噪比的背光图像,尤其在ICF内爆过程诊断中ns束很强本底干扰的情况下[23]。为了解决皮秒激光产生X射线背光照相高空间分辨率的问题,国内外研究发展了多种照相技术。首先基于弯晶、KB镜等辅助成像技术实现高空间分辨照相[26-27, 38-39],辅助成像具有窄带宽成像特点(约8 eV),从背光图像获得面密度图像的不确定度小,但目前辅助成像实验中主要有Si(Heα,1.865 keV)[38],Ti(Kα,4.51 keV)[27],Cu(Kα,8.05 keV)[26, 39]等,光子能量普遍偏低(一般低于20 keV),不能穿透高面密度的ICF内爆压缩区域,此外存在射线的利用效率低的缺点。第二种是基于LiF晶体探测器的高分辨照相[40],Rayleigh-Taylor不稳定性过程背光照相中LiF成像屏空间分辨率7.5 μm[40],但是LiF的探测效率低,需要高产额的X射线源,而且背光照相中要实现高空间分辨率,必须采用紧贴成像方式,即探测器紧贴照相客体;而对于ICF内爆过程,紧贴成像中探测器保护、自发光干扰都很难解决。第三种高分辨照相方式是美国NIF装置上背光靶采用大直径(25 μm)的丝靶提升皮秒激光的利用效率以保证高X射线光源亮度,在实验前测量光源分布,通过对丝靶照相图像开展退卷积运算(去除光源空间分布影响),获得高分辨背光图像[12, 24],实验过程中采用理想WC球测量了光源分布,并在实验中假设光源分布一致性好,预估空间分辨达到5 μm。这种方式虽然初步解决了皮秒高能背光源空间分辨率与亮度的矛盾,但激光实验中X光源分布发发一致性,受到制靶工艺、激光参数稳定性以及束靶耦合精度等多个因素影响,很难完全保证。
本研究基于丝阵靶研究源编码照相,建立面向ICF内爆峰值压缩时刻冷燃料面密度与对称性诊断的新型高分辨背光照相技术。采用丝阵靶的方式一方面通过增大激光拦截面积来提升激光利用效率,保证X光源亮度足够;另一方面通过监测皮秒激光与丝阵靶作用产生的X光空间分布,通过图像反演处理实现高空间分辨图像。由于背光照相X光分布是按照丝阵靶设计的,X射线光源分布预先被编码,因此本高分辨照相技术称为源编码照相。本文论述源编码基本设计与照相模拟工作,并展示星光III激光装置上开展的源编码照相实验的结果。
1. 源编码设计框架与照相模拟
采用源编码技术开展透射照相的原理见式(1),其中等离子体X光源源区空间分布S通过设计的编码模式来调控。相比一般编码成像的卷积过程,源编码过程表现为带噪声的二阶卷积,反演的复杂性显著增加,实验数据处理过程中需要选用合适的扣本底、降噪等图像预处理。
S⊗O+N=I (1) 式中:S为等离子体X光源源区空间分布;O为客体空间分布信息;N为噪声项;I为记录的照相图像。
激光等离子体X光源源编码示意见图1。在激光打靶保证较大面积光斑均匀分布区域基础上,设计按照一定分布的丝阵作为编码模式,然后以编码源开展透射照相,应用反演算法去除由于不同源成像重叠等造成图像模糊,获得清晰客体图像。源编码技术在中子照相领域中广泛应用[41-45],但是由于粒子束产生方式不同,源区域的空间大小也差异巨大,而且成像也存在瞬态照相与稳态照相的差异,因此要建立皮秒超短激光X射线源编码技术,需要从丝阵靶设计与制备、束靶耦合、实验过程干扰屏蔽、图像反演处理等各个环节进行精度控制、综合改进才能成功实验。具体而言,在激光等离子X光源上开展源编码技术,其困难主要有两个方面:第一,由于S受到激光打靶、制靶精度等影响,每发的差异性较大,很难完全满足设计要求,因此除了提高激光质量与制靶精度等,还需要研究适应性好的编码模式,及鲁棒性强的反演算法,保证反演客体图像与真实客体图像一致;第二,皮秒束激光打靶时不可避免地产生大量超热电子、杂散X射线等组成的复杂辐射场,该辐射场对源编码照相影响很大,必须通过屏蔽设计予以解决。
X射线源编码技术主要由编码源设计、客体透视照相及客体图像反演三个部分组成,编码源设计的关键为编码模式设计,客体图像反演目前主要采用Richardson-Lucy(RL)方法等成熟算法[46-47],客体照相中需要考虑屏蔽ps束打靶下复杂辐射场的干扰。
1.1 编码阵列板的源区分布测量设计
借鉴快中子编码成像技术,实验中设计了针孔阵列板用于测量X射线光源分布,蒙特卡罗模拟得到的成像图像见图2,中间区域为3个半影孔的成像结果,上下两边区域各是10个针孔的成像图像,半影图像与针孔图像可以分别分析获得源区图像,模拟中光源分布采用3根水平排列丝。
不同孔径的针孔图像见图3,为了获得三丝的源区分布图像,需要针孔的直径在15 μm以下。
不同光子数目下模拟半影图像与重建源区见图4,光源亮度对应的光子数目从9×1010到9×1013,从模拟图像显示,半影成像能够满足低光源亮度下源区分布测量的要求;而光子数目更高时,重建源的分布更平滑,更符合设计。
1.2 客体反演模拟
作为丝阵靶反演的对比标准,单丝靶模拟图像见图5所示,为了表征理想分辨情况,模拟中单丝直径设为0.5 μm,图中对应X射线能谱分别为8 keV单能、Cu靶轫致辐射谱、Au靶轫致辐射谱,轫致辐射谱由麦克斯韦分布的电子(温度设为2 MeV)产生,轫致辐射谱的照相图像明显存在着高能透射光子的干扰。
丝阵靶的源编码图像反演结果见图6,反演图像能够较好反映原始客体图像的特征,但与单能射线反演结果相比,轫致辐射谱反演结果存在明显的条状畸变,而且在Au靶轫致辐射下影响更严重。模拟中通过增大探测单元尺寸,有效提升了源编码照相图像的信噪比,从而提升了反演图像的平滑性。
2. 实验条件
在星光III激光装置[45]上开展了激光X射线源编码照相实验,实验中采用皮秒束激光与金属丝阵靶相互作用产生多点分布的X射线源,测量X射线源分布与客体图像。实验过程中皮秒激光束能量80~130 J,脉宽700~900 fs,对比度优于3×107,激光聚焦在10 μm焦斑内能量集中度约55%。
实验排布见图7,皮秒激光束接近垂直入射到丝阵靶丝侧面,在丝的后端面,通过高能X射线相机(HXI)测量X射线图像,滤片堆栈谱仪在接近测量照相方向上测量X射线轫致辐射谱与产额,电子磁谱仪(EMS)测量靶后电子温度。另外沿着激光与丝阵作用的丝侧面,通过针孔相机(PHC)监测皮秒激光作用情况。
3. 实验研究结果
3.1 编码阵列板的源区分布测量设计
基于前期蒙特卡罗成像模拟,实验中设计了特殊的照相客体(图8(a)),包含了字母客体与针孔阵列,字母客体用于验证反演效果并评估空间分辨,针孔阵列测量X射线源的空间分布。照相客体通过飞秒激光在Ta片上加工实现,其中Ta片厚度100 μm±5 μm,半影孔直径200 μm±5 μm,针孔直径15 μm±2 μm。采用集合字母客体与针孔阵列的照相客体,实验上首次获得了同一发、相同视角的客体照相与源分布图像(图8(b))。
考虑了目前国内短脉冲激光焦斑一般介于30~60 μm,设计了数目较少的三丝的丝阵靶,其中W丝阵靶(三丝排列,丝直径5.4 μm、丝心距20 μm)的装配显微图片如图9所示。源分布测量采用针孔成像与半影成像两种方式见图10。第一,由于制靶、束靶耦合等因素,实际源分布与设计的竖直一线排列存在差异,因此照相客体的引入降低了靶制备工艺的要求,在实验各发次存在差异情况下准确测量光源分布;第二,针孔成像与半影成像测量源分布吻合良好,验证了源分布测量的准确性。
3.2 客体图像反演与空间分辨率评价
W丝阵靶照相图像,采用RL方法反演获得图像见图11,反演中采用图10中半影成像测量的光源分布。图11同时给出了Au单丝靶(直径20 μm)的照相图像,W丝阵靶反演图像清晰地区分了横竖的分辨狭缝,同时“E”字母与狭缝的边缘比单丝图像更清晰。为了定量评价空间分辨率,取出“E”字母边缘,获得边缘扩散曲线见图12[25, 48-50],按照边缘扩散函数值的10%~90%定义为成像系统空间分辨率[48]。空间分辨率评价结果为,W丝阵靶反演图像在竖直方向与水平方向的空间分辨率分别为6.6 μm±0.1 μm与5.4 μm±0.7 μm;单丝靶照相图像在竖直方向与水平方向的空间分辨率分别为20.3 μm±2.2 μm与19.6 μm±2.2 μm,与单丝靶的直径相同[21-22, 49-50]。
现阶段丝阵靶反演图像的空间分辨率约等于丝阵靶中单丝的直径,表明实验中对源分布测量的精度仍不高,只能测量单根丝的发光强度与相对位置,对单根丝内部的光源分布测量的误差较大。
3.3 激光到X射线的能量转换效率
利用接近照相方向上设置的滤片堆栈谱仪[51],测量了X射线能谱与光源亮度,辐射能谱见图13。激光到高能轫致辐射(50~200 keV)的能量转换效率(即X射线能量产额与激光能量之比[20]),W丝阵靶的转换效率介于3.3×10−4至7.1×10−4,平均5.4×10−4,与Au单丝靶的转换效率(4.8×10−4)基本一致。皮秒激光束与丝阵靶作用产生高能X射线的能量转换效率一方面受到靶对激光的拦截面积影响,考虑到激光焦斑内光强呈高斯分布,激光能量集中于中心区域,W丝阵靶(排列三丝,直径5.4 μm)与Au单丝靶(直径20 μm)的激光拦截效率差异不大;另一方面与靶材料相关,组成两种靶型金属的原子序数(W与Au分别为74,79)差异不大,产生X射线效率基本相等;综合而言两种靶的激光到X射线的能量转换效率基本一致。在星光III装置上,通过能量120 J的皮秒激光与W丝阵靶相互作用,获得的全立体角内高能X射线光子总光子数高达4.4×1012,为在强背景干扰下提供高信噪比的ICF靶丸压缩背光图像提供了有利条件。
4. 结 论
通过前期研究中源编码靶制备、源分布测量、照相客体设计、照相方案的优化等改进措施,关键设计了包含字母客体与针孔阵列的照相客体,通过同一发相同视角测量源分布与客体照相技术,本研究在实验上首次建立了皮秒激光驱动的高能X射线源编码照相技术。通过星光III实验研究,基于W丝阵靶(三丝排列,丝直径5.4 μm)照相的反演图像已实现了空间分辨率5.4 μm±0.7 μm;激光到X射线(50~200 keV)的能量转换效率,W丝阵靶达到5.4×10−4,与传统Au单丝靶的转换效率(4.8×10−4)一致。在ps束激光能量120 J条件下,获得的4π内高能辐射总光子数高达4.4×1012,为强背景干扰下提供高信噪比、高分辨率的ICF靶丸压缩背光图像提供了重要照相方式。
目前经W丝阵靶的实验结果分析,源编码照相的空间分辨率都基本等于阵列中金属丝的直径,进一步提升空间分辨率时,需一方面提升丝阵靶制备精度,另一方面优化针孔阵列板设计与加工精度。在ICF内爆动态照相中应用源编码技术,在目前制靶精度条件下必须测量同发次的光源空间分布,后续研究中将重点发展高稳定性的高精度靶型。
-
-
[1] 德雷克. 高能量密度物理: 基础、惯性约束聚变和实验天体物理学[M]. 孙承纬, 译. 北京: 国防工业出版社, 2013: 1-12Drake R P. High-energy-density physics: fundamentals, inertial fusion, and experimental astrophysics[M]. Sun Chengwei, trans. Beijing: National Defense Industry Press, 2013: 1-17 [2] 核物理与等离子体物理发展战略研究编写组, 核物理与等离子体物理——学科前沿及发展战略[M]. 北京: 科学出版社, 2017: 3-23Development Strategy Research Preparation Group of Nuclear Physics and Plasma Physics. Nuclear physics and plasma physics: discipline frontier and development strategy[M]. Beijing: Science Press, 2017: 3-23 [3] Zhang Jihua, Li Yutong, Chen L M, et al. Studies of high energy density physics and laboratory astrophysics driven by intense lasers[J]. Journal of Physics: Conference Series, 2016, 717: 012004. doi: 10.1088/1742-6596/717/1/012004 [4] Casner A, Rigon G, Albertazzi B, et al. Turbulent hydrodynamics experiments in high energy density plasmas: scientific case and preliminary results of the TurboHEDP project[J]. High Power Laser Science and Engineering, 2018, 6: e44. doi: 10.1017/hpl.2018.34 [5] Kuranz C C, Park H S, Remington B A, et al. Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility[J]. Astrophysics and Space Science, 2011, 336(1): 207-211. doi: 10.1007/s10509-011-0679-9 [6] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755 [7] Remington B A, Arnett D, Paul R, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284(5419): 1488-1493. doi: 10.1126/science.284.5419.1488 [8] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 2019, 26: 050601. doi: 10.1063/1.5091449 [9] Clark D S, Marinak M M, Weber C R, et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign[J]. Physics of Plasmas, 2015, 22: 022703. doi: 10.1063/1.4906897 [10] Loomis E N, Braun D, Batha S H, et al. Areal density evolution of isolated surface perturbations at the onset of X-ray ablation Richtmyer-Meshkov growth[J]. Physics of Plasmas, 2011, 18: 092702. doi: 10.1063/1.3632083 [11] Rinderknecht H G, Rosenberg M J, Zylstra A B, et al. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF[J]. Physics of Plasmas, 2015, 22: 082709. doi: 10.1063/1.4928382 [12] Tommasini R, Landen O , Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 2020, 125: 155003. doi: 10.1103/PhysRevLett.125.155003 [13] Borm B, Khaghani D, Neumayer P. Properties of laser-driven hard X-ray sources over a wide range of laser intensities[J]. Physics of Plasmas, 2019, 26: 023109. doi: 10.1063/1.5081800 [14] Armstrong C D, Brenner C M, Zemaityte E, et al. Bremsstrahlung emission profile from intense laser-solid interactions as a function of laser focal spot size[J]. Plasma Physics and Controlled Fusion, 2019, 61: 034001. doi: 10.1088/1361-6587/aaf596 [15] Jarrott L C, Kemp A J, Divol L, et al. Kα and bremsstrahlung X-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy[J]. Physics of Plasmas, 2014, 21: 031211. doi: 10.1063/1.4865230 [16] Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser–nanostructure target interaction[J]. Chinese Optics Letters, 2015, 13: 031001. doi: 10.3788/COL201513.031001 [17] Vaughan K, Moore A S, Smalyuk V, et al. High-resolution 22–52 keV backlighter sources and application to X-ray radiography[J]. High Energy Density Physics, 2013, 9(3): 635-641. doi: 10.1016/j.hedp.2013.05.006 [18] Xiong Jun, Dong Jiaqin, Jia Guo, et al. Optimization of 4.7-keV X-ray titanium sources driven by 100-ps laser pulses[J]. Chinese Physics B, 2013, 22: 065201. doi: 10.1088/1674-1056/22/6/065201 [19] Le Pape S, Divol L, Macphee A, et al. Optimization of high energy X ray production through laser plasma interaction[J]. High Energy Density Physics, 2019, 31: 13-18. doi: 10.1016/j.hedp.2019.01.002 [20] Chen Hui, Hermann M R, Kalantar D H, et al. High-energy (>70 keV) X-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 033112. doi: 10.1063/1.4978493 [21] Tommasini R, MacPhee A, Hey D, et al. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited)[J]. Review of Scientific Instruments, 2008, 79: 10E901. doi: 10.1063/1.2953593 [22] Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 2011, 18: 056309. doi: 10.1063/1.3567499 [23] Hall G N, Izumi N, Tommasini R, et al. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF[J]. Review of Scientific Instruments, 2014, 85: 11D624. doi: 10.1063/1.4892558 [24] Tommasini R, Bailey C, Bradley D K, et al. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 053104. doi: 10.1063/1.4983137 [25] Tian Chao, Yu Minghai, Shan Lianqiang, et al. Radiography of direct drive double shell targets with hard X-rays generated by a short pulse laser[J]. Nuclear Fusion, 2019, 59: 046012. doi: 10.1088/1741-4326/aafe30 [26] Theobald W, Solodov A A, Stoeckl C, et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 2014, 5: 5785. doi: 10.1038/ncomms6785 [27] Sawada H, Lee S, Shiroto T, et al. Flash Kα radiography of laser-driven solid sphere compression for fast ignition[J]. Applied Physics Letters, 2016, 108: 254101. doi: 10.1063/1.4954383 [28] Le Pape S, Neumayer P, Fortmann C, et al. X-ray radiography and scattering diagnosis of dense shock-compressed matter[J]. Physics of Plasmas, 2010, 17: 056309. doi: 10.1063/1.3377785 [29] Morace A, Fedeli L, Batani D, et al. Development of X-ray radiography for high energy density physics[J]. Physics of Plasmas, 2014, 21: 102712. doi: 10.1063/1.4900867 [30] Chu Genbai, Xi Tao, Yu Minghai, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 2018, 89: 115106. doi: 10.1063/1.5034401 [31] de Rességuier T, Prudhomme G, Roland C, et al. Picosecond X-ray radiography of microjets expanding from laser shock-loaded grooves[J]. Journal of Applied Physics, 2018, 124: 065106. doi: 10.1063/1.5040304 [32] Andreev A A, Bel’kov S A, Platonov K Y, et al. Picosecond X-ray radiography of superdense high-temperature laser plasma[J]. Optics and Spectroscopy, 2017, 123(3): 471-481. doi: 10.1134/S0030400X17090028 [33] Sawada H, Daykin T S, Hutchinson T M, et al. Development of broadband X-ray radiography for diagnosing magnetically driven cylindrically compressed matter[J]. Physics of Plasmas, 2019, 26: 083104. doi: 10.1063/1.5100173 [34] Dizière A, Pelka A, Ravasio A, et al. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics[J]. Physics of Plasmas, 2015, 22: 012702. doi: 10.1063/1.4905525 [35] Brambrink E, Baton S, Koenig M, et al. Short-pulse laser-driven X-ray radiography[J]. High Power Laser Science and Engineering, 2016, 4: e30. doi: 10.1017/hpl.2016.31 [36] Khan S F, Martinez D A, Kalantar D H, et al. A dual high-energy radiography platform with 15 μm resolution at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 043712. doi: 10.1063/5.0044043 [37] Hill M P, Williams G J, Zylstra A B, et al. High resolution >40 keV X-ray radiography using an edge-on micro-flag backlighter at NIF-ARC[J]. Review of Scientific Instruments, 2021, 92: 033535. doi: 10.1063/5.0043783 [38] Stoeckl C, Epstein R, Betti R, et al. Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA[J]. Physics of Plasmas, 2017, 24: 056304. doi: 10.1063/1.4977918 [39] Casey D T, Woods D T, Smalyuk V A, et al. Performance and mix measurements of indirect drive Cu-doped Be implosions[J]. Physical Review Letters, 2015, 114: 205002. doi: 10.1103/PhysRevLett.114.205002 [40] Faenov A Y, Pikuz T A, Mabey P, et al. Advanced high resolution X-ray diagnostic for HEDP experiments[J]. Scientific Reports, 2018, 8: 16407. doi: 10.1038/s41598-018-34717-9 [41] Hausladen P, Blackston M A, Brubaker E, et al. Fast neutron coded-aperture imaging of special nuclear material configurations[C]//Proceedings of the 53rd Annual Meeting of the INMM. Orlando, 2012. [42] Wang Sheng, Zou Yubin, Zhang Xueshuang, et al. Coded source imaging simulation with visible light[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 187-191. [43] Li Yuanji, Huang Zhifeng, Chen Zhiqiang, et al. Preliminary study of coded-source-based neutron imaging at the CPHS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 131-134. [44] Grünauer F. Image deconvolution and coded masks in neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1/3): 342-352. [45] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9 [46] Hanisch R J, White R L, Gilliland R L. Deconvolution of Hubbles space telescope images and spectra[M]//Jansson P A. Deconvolution of Images and Spectra. 2nd ed. San Diego: Academic Press, Inc. , 1997. [47] Biggs D S C, Andrews M. Acceleration of iterative image restoration algorithms[J]. Applied Optics, 1997, 36(8): 1766-1775. doi: 10.1364/AO.36.001766 [48] Fiksel G, Marshall F J, Mileham C, et al. Note: spatial resolution of Fuji BAS-TR and BAS-SR imaging plates[J]. Review of Scientific Instruments, 2012, 83: 086103. doi: 10.1063/1.4739771 [49] Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75 keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918 [50] Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 2006, 13: 056309. doi: 10.1063/1.2178775 [51] 于明海, 谭放, 闫永宏, 等. 用于激光产生的高能X射线源能谱诊断的滤片堆栈谱仪的研制[J]. 原子能科学技术, 2017, 51(6):1090-1095 doi: 10.7538/yzk.2017.51.06.1090Yu Minghai, Tan Fang, Yan Yonghong, et al. Development of filter stack spectrometer for spectrum measurement of X ray generated by laser[J]. Atomic Energy Science and Technology, 2017, 51(6): 1090-1095 doi: 10.7538/yzk.2017.51.06.1090 期刊类型引用(3)
1. 罗笔瀚,王洪建,冯永祯. 强激光加载下铝、锡微喷特性实验研究. 激光杂志. 2024(05): 25-33 . 百度学术
2. 王洪建,冯永祯,罗笔瀚,张绍军,刘红杰. 皮秒激光驱动X光源空间分辨特性研究. 光电子·激光. 2024(12): 1292-1299 . 百度学术
3. 康海涛,朱坪,张栋俊,姚修宇,易友建,李兆良,童妙妍,华能,乔战峰,孙明营,栗建兴,朱健强. 集束皮秒拍瓦激光靶瞄准系统设计分析与实验研究. 中国激光. 2024(21): 242-249 . 百度学术
其他类型引用(2)
-