留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
张天奎, 单连强, 于明海, 等. 皮秒激光驱动的X射线源编码高分辨照相技术[J]. 强激光与粒子束, 2022, 34: 122001. doi: 10.11884/HPLPB202234.220186
引用本文: 张天奎, 单连强, 于明海, 等. 皮秒激光驱动的X射线源编码高分辨照相技术[J]. 强激光与粒子束, 2022, 34: 122001. doi: 10.11884/HPLPB202234.220186
Zhang Tiankui, Shan Lianqiang, Yu Minghai, et al. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34: 122001. doi: 10.11884/HPLPB202234.220186
Citation: Zhang Tiankui, Shan Lianqiang, Yu Minghai, et al. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34: 122001. doi: 10.11884/HPLPB202234.220186

皮秒激光驱动的X射线源编码高分辨照相技术

doi: 10.11884/HPLPB202234.220186
基金项目: 国家自然科学基金项目(11875048,12235014,11505166)
详细信息
    作者简介:

    张天奎,zhangtk_618@163.com

    通讯作者:

    周维民,zhouweimin@gmail.com

    谷渝秋,yqgu@caep.ac.cn

  • 中图分类号: O536; TL65

Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser

  • 摘要: 为实现惯性约束聚变(ICF)内爆燃烧停滞阶段过程中最大压缩时刻的冷燃料面密度分布测量,设计了包含字母客体与针孔阵列的照相客体,通过同一发相同视角测量源分布与客体照相技术,首次建立了皮秒激光驱动的高能X射线源编码照相技术。通过星光III实验研究,基于W丝阵靶照相的反演图像空间分辨率5.4 μm±0.7 μm;激光到X射线(50~200 keV)的能量转换效率,W丝阵靶5.4×10−4,与传统Au单丝靶的转换效率(4.8×10−4)一致。基于源编码照相解决了传统皮秒激光背光照相中空间分辨率与光源亮度不能兼顾的困难,为强背景干扰下提供高信噪比、高分辨率的ICF靶丸压缩背光图像提供了重要照相方式。
  • 图  1  激光X射线源编码照相示意图

    Figure  1.  Diagram of laser driven X-ray source coding radiography

    图  2  针孔阵列板的模拟图像

    Figure  2.  Simulated image using pinhole-array plate

    图  3  不同孔径的针孔模拟图像

    Figure  3.  Simulated images by pinhole with different diameter

    图  4  不同光源亮度下模拟半影图像与对应重建源图像

    Figure  4.  Simulated penumbral image and corresponding reconstructed source image at different X-ray brightness

    图  5  不同辐射能谱下单丝照相图像

    Figure  5.  Radiography image by single-wire target with different X-ray spectrum

    图  6  不同辐射能谱下丝阵靶模拟结果对应的反演图像

    Figure  6.  Inversion image from simulated image by wire-array target with different X-ray spectrum

    图  7  实验排布

    Figure  7.  Experimental configuration

    图  8  客体设计图与实验照相图像

    Figure  8.  Design drawing of object and experimental radiography image

    图  9  装配好的丝阵靶显微图片

    Figure  9.  Micrograph picture of assembled wire-array target

    图  10  丝阵靶的针孔图像、半影图像与半影重建源图像

    Figure  10.  Pinhole image, penumbral image and reconstructed image from penumbral image of wire-array target

    图  11  丝阵靶的照相图像、反演图像和单丝靶照相图像

    Figure  11.  Radiography image with wire-array target, inversion image and radiography image with single-wire target

    图  12  丝阵靶反演图像和单丝靶照相图像的边缘扩散曲线

    Figure  12.  Edge spread curves from inversion image by wire-array target and radiography image by single-wire target

    图  13  单丝靶与丝阵靶轫致辐射能谱

    Figure  13.  Bremsstrahlung spectrum of single-wire target and wire-array target

  • [1] 德雷克. 高能量密度物理: 基础、惯性约束聚变和实验天体物理学[M]. 孙承纬, 译. 北京: 国防工业出版社, 2013: 1-12

    Drake R P. High-energy-density physics: fundamentals, inertial fusion, and experimental astrophysics[M]. Sun Chengwei, trans. Beijing: National Defense Industry Press, 2013: 1-17
    [2] 核物理与等离子体物理发展战略研究编写组, 核物理与等离子体物理——学科前沿及发展战略[M]. 北京: 科学出版社, 2017: 3-23

    Development Strategy Research Preparation Group of Nuclear Physics and Plasma Physics. Nuclear physics and plasma physics: discipline frontier and development strategy[M]. Beijing: Science Press, 2017: 3-23
    [3] Zhang Jihua, Li Yutong, Chen L M, et al. Studies of high energy density physics and laboratory astrophysics driven by intense lasers[J]. Journal of Physics: Conference Series, 2016, 717: 012004. doi: 10.1088/1742-6596/717/1/012004
    [4] Casner A, Rigon G, Albertazzi B, et al. Turbulent hydrodynamics experiments in high energy density plasmas: scientific case and preliminary results of the TurboHEDP project[J]. High Power Laser Science and Engineering, 2018, 6: e44. doi: 10.1017/hpl.2018.34
    [5] Kuranz C C, Park H S, Remington B A, et al. Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility[J]. Astrophysics and Space Science, 2011, 336(1): 207-211. doi: 10.1007/s10509-011-0679-9
    [6] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
    [7] Remington B A, Arnett D, Paul R, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284(5419): 1488-1493. doi: 10.1126/science.284.5419.1488
    [8] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 2019, 26: 050601. doi: 10.1063/1.5091449
    [9] Clark D S, Marinak M M, Weber C R, et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign[J]. Physics of Plasmas, 2015, 22: 022703. doi: 10.1063/1.4906897
    [10] Loomis E N, Braun D, Batha S H, et al. Areal density evolution of isolated surface perturbations at the onset of X-ray ablation Richtmyer-Meshkov growth[J]. Physics of Plasmas, 2011, 18: 092702. doi: 10.1063/1.3632083
    [11] Rinderknecht H G, Rosenberg M J, Zylstra A B, et al. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF[J]. Physics of Plasmas, 2015, 22: 082709. doi: 10.1063/1.4928382
    [12] Tommasini R, Landen O , Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 2020, 125: 155003. doi: 10.1103/PhysRevLett.125.155003
    [13] Borm B, Khaghani D, Neumayer P. Properties of laser-driven hard X-ray sources over a wide range of laser intensities[J]. Physics of Plasmas, 2019, 26: 023109. doi: 10.1063/1.5081800
    [14] Armstrong C D, Brenner C M, Zemaityte E, et al. Bremsstrahlung emission profile from intense laser-solid interactions as a function of laser focal spot size[J]. Plasma Physics and Controlled Fusion, 2019, 61: 034001. doi: 10.1088/1361-6587/aaf596
    [15] Jarrott L C, Kemp A J, Divol L, et al. Kα and bremsstrahlung X-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy[J]. Physics of Plasmas, 2014, 21: 031211. doi: 10.1063/1.4865230
    [16] Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser–nanostructure target interaction[J]. Chinese Optics Letters, 2015, 13: 031001. doi: 10.3788/COL201513.031001
    [17] Vaughan K, Moore A S, Smalyuk V, et al. High-resolution 22–52 keV backlighter sources and application to X-ray radiography[J]. High Energy Density Physics, 2013, 9(3): 635-641. doi: 10.1016/j.hedp.2013.05.006
    [18] Xiong Jun, Dong Jiaqin, Jia Guo, et al. Optimization of 4.7-keV X-ray titanium sources driven by 100-ps laser pulses[J]. Chinese Physics B, 2013, 22: 065201. doi: 10.1088/1674-1056/22/6/065201
    [19] Le Pape S, Divol L, Macphee A, et al. Optimization of high energy X ray production through laser plasma interaction[J]. High Energy Density Physics, 2019, 31: 13-18. doi: 10.1016/j.hedp.2019.01.002
    [20] Chen Hui, Hermann M R, Kalantar D H, et al. High-energy (>70 keV) X-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 033112. doi: 10.1063/1.4978493
    [21] Tommasini R, MacPhee A, Hey D, et al. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited)[J]. Review of Scientific Instruments, 2008, 79: 10E901. doi: 10.1063/1.2953593
    [22] Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 2011, 18: 056309. doi: 10.1063/1.3567499
    [23] Hall G N, Izumi N, Tommasini R, et al. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF[J]. Review of Scientific Instruments, 2014, 85: 11D624. doi: 10.1063/1.4892558
    [24] Tommasini R, Bailey C, Bradley D K, et al. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 053104. doi: 10.1063/1.4983137
    [25] Tian Chao, Yu Minghai, Shan Lianqiang, et al. Radiography of direct drive double shell targets with hard X-rays generated by a short pulse laser[J]. Nuclear Fusion, 2019, 59: 046012. doi: 10.1088/1741-4326/aafe30
    [26] Theobald W, Solodov A A, Stoeckl C, et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 2014, 5: 5785. doi: 10.1038/ncomms6785
    [27] Sawada H, Lee S, Shiroto T, et al. Flash Kα radiography of laser-driven solid sphere compression for fast ignition[J]. Applied Physics Letters, 2016, 108: 254101. doi: 10.1063/1.4954383
    [28] Le Pape S, Neumayer P, Fortmann C, et al. X-ray radiography and scattering diagnosis of dense shock-compressed matter[J]. Physics of Plasmas, 2010, 17: 056309. doi: 10.1063/1.3377785
    [29] Morace A, Fedeli L, Batani D, et al. Development of X-ray radiography for high energy density physics[J]. Physics of Plasmas, 2014, 21: 102712. doi: 10.1063/1.4900867
    [30] Chu Genbai, Xi Tao, Yu Minghai, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 2018, 89: 115106. doi: 10.1063/1.5034401
    [31] de Rességuier T, Prudhomme G, Roland C, et al. Picosecond X-ray radiography of microjets expanding from laser shock-loaded grooves[J]. Journal of Applied Physics, 2018, 124: 065106. doi: 10.1063/1.5040304
    [32] Andreev A A, Bel’kov S A, Platonov K Y, et al. Picosecond X-ray radiography of superdense high-temperature laser plasma[J]. Optics and Spectroscopy, 2017, 123(3): 471-481. doi: 10.1134/S0030400X17090028
    [33] Sawada H, Daykin T S, Hutchinson T M, et al. Development of broadband X-ray radiography for diagnosing magnetically driven cylindrically compressed matter[J]. Physics of Plasmas, 2019, 26: 083104. doi: 10.1063/1.5100173
    [34] Dizière A, Pelka A, Ravasio A, et al. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics[J]. Physics of Plasmas, 2015, 22: 012702. doi: 10.1063/1.4905525
    [35] Brambrink E, Baton S, Koenig M, et al. Short-pulse laser-driven X-ray radiography[J]. High Power Laser Science and Engineering, 2016, 4: e30. doi: 10.1017/hpl.2016.31
    [36] Khan S F, Martinez D A, Kalantar D H, et al. A dual high-energy radiography platform with 15 μm resolution at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 043712. doi: 10.1063/5.0044043
    [37] Hill M P, Williams G J, Zylstra A B, et al. High resolution >40 keV X-ray radiography using an edge-on micro-flag backlighter at NIF-ARC[J]. Review of Scientific Instruments, 2021, 92: 033535. doi: 10.1063/5.0043783
    [38] Stoeckl C, Epstein R, Betti R, et al. Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA[J]. Physics of Plasmas, 2017, 24: 056304. doi: 10.1063/1.4977918
    [39] Casey D T, Woods D  T, Smalyuk V A,  et al. Performance and mix measurements of indirect drive Cu-doped Be implosions[J]. Physical Review Letters, 2015, 114: 205002. doi: 10.1103/PhysRevLett.114.205002
    [40] Faenov A Y, Pikuz T A, Mabey P, et al. Advanced high resolution X-ray diagnostic for HEDP experiments[J]. Scientific Reports, 2018, 8: 16407. doi: 10.1038/s41598-018-34717-9
    [41] Hausladen P, Blackston M A, Brubaker E, et al. Fast neutron coded-aperture imaging of special nuclear material configurations[C]//Proceedings of the 53rd Annual Meeting of the INMM. Orlando, 2012.
    [42] Wang Sheng, Zou Yubin, Zhang Xueshuang, et al. Coded source imaging simulation with visible light[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 187-191.
    [43] Li Yuanji, Huang Zhifeng, Chen Zhiqiang, et al. Preliminary study of coded-source-based neutron imaging at the CPHS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 131-134.
    [44] Grünauer F. Image deconvolution and coded masks in neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1/3): 342-352.
    [45] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9
    [46] Hanisch R J, White R L, Gilliland R L. Deconvolution of Hubbles space telescope images and spectra[M]//Jansson P A. Deconvolution of Images and Spectra. 2nd ed. San Diego: Academic Press, Inc. , 1997.
    [47] Biggs D S C, Andrews M. Acceleration of iterative image restoration algorithms[J]. Applied Optics, 1997, 36(8): 1766-1775. doi: 10.1364/AO.36.001766
    [48] Fiksel G, Marshall F J, Mileham C, et al. Note: spatial resolution of Fuji BAS-TR and BAS-SR imaging plates[J]. Review of Scientific Instruments, 2012, 83: 086103. doi: 10.1063/1.4739771
    [49] Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75 keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918
    [50] Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 2006, 13: 056309. doi: 10.1063/1.2178775
    [51] 于明海, 谭放, 闫永宏, 等. 用于激光产生的高能X射线源能谱诊断的滤片堆栈谱仪的研制[J]. 原子能科学技术, 2017, 51(6):1090-1095 doi: 10.7538/yzk.2017.51.06.1090

    Yu Minghai, Tan Fang, Yan Yonghong, et al. Development of filter stack spectrometer for spectrum measurement of X ray generated by laser[J]. Atomic Energy Science and Technology, 2017, 51(6): 1090-1095 doi: 10.7538/yzk.2017.51.06.1090
  • 加载中
图(13)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  347
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-09-26
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回