留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于消失点检测算法的束靶红外图像畸变校正

陈丽萍 许永建 於子辰 汪日新 彭旭峰 徐益臻 于玲

陈丽萍, 许永建, 於子辰, 等. 基于消失点检测算法的束靶红外图像畸变校正[J]. 强激光与粒子束, 2023, 35: 029001. doi: 10.11884/HPLPB202335.220109
引用本文: 陈丽萍, 许永建, 於子辰, 等. 基于消失点检测算法的束靶红外图像畸变校正[J]. 强激光与粒子束, 2023, 35: 029001. doi: 10.11884/HPLPB202335.220109
Chen Liping, Xu Yongjian, Yu Zichen, et al. Neutral beam infrared image distortion correction based on vanishing point detection[J]. High Power Laser and Particle Beams, 2023, 35: 029001. doi: 10.11884/HPLPB202335.220109
Citation: Chen Liping, Xu Yongjian, Yu Zichen, et al. Neutral beam infrared image distortion correction based on vanishing point detection[J]. High Power Laser and Particle Beams, 2023, 35: 029001. doi: 10.11884/HPLPB202335.220109

基于消失点检测算法的束靶红外图像畸变校正

doi: 10.11884/HPLPB202335.220109
基金项目: 中国聚变堆主机关键系统综合研究设施(2018-000052-73-01-001228);中国科学院合肥科学中心协同创新计划项目(2020HSC-CIP016);国家自然科学基金项目(11975262,11905248)
详细信息
    作者简介:

    陈丽萍,liping.chen@ipp.ac.cn

    通讯作者:

    许永建,yjxu@ipp.ac.cn

  • 中图分类号: TP391.41

Neutral beam infrared image distortion correction based on vanishing point detection

  • 摘要: 传统的霍夫变换、Cannylines直线检测算法、霍夫概率变换方法在图像上的直线检测效果不佳,存在检测线段不连续不正确的问题,因而,利用Sobel滤波对红外图像横轴和纵轴两个方向分别进行锐化,通过线段检测(LSD)算法实现线段特征检测,进而经线段聚类拟合获得图像中完整的直线,通过对直线交点计算获得消失点,最后依据透视关系计算得到校正图像。实验结果表明,该方法可以实现对中性束红外图像的自动有效校正。
  • 图  1  实验平台剖面图

    Figure  1.  Section of experimental platform

    图  2  诊断靶图像和实验时的红外图像

    Figure  2.  Diagnostic target and experimental thermal infrared image

    图  3  图像畸变校正流程图

    Figure  3.  Flowchart of image rectification

    图  4  Sobel卷积后图像直线检测结果

    Figure  4.  Results of line segment detection after Sobel convolution

    图  5  线段关系示意图

    Figure  5.  Diagram of line segment relations

    图  6  图像校正结果

    Figure  6.  Result of image rectification

    图  7  温度值变化情况

    Figure  7.  Changes in temperature

    图  8  各直线检测算法检测结果比较

    Figure  8.  Comparison of detection results of each line segment detection algorithm

    表  1  线段聚类算法

    Table  1.   Line segment clustering algorithm

    algorithmline segment clustering algorithm based on line segment relation
    input the sample set D = {L1,L2,…,Lm}, L means coordinate values of two endpoints of a line segment
    output coordinates of vanishing points
    1: R = $ \varnothing $
    2: for i = 1,2,…,m do
    3  C=$ \varnothing $
    4:  for j = 1,2….,m do
    5:   calculate $ h $ between Li and Lj
    6:   calculate $ \Delta \theta $ between Li and Lj
    7:   if $ h $<threshold and $ \Delta \theta $<threshold then
    8:    C=C $ \cup $ Lj
    9:    remove Lj from D
    10:  R=R $ \cup $ C
    11:  remove Li from D
    12: take the two sets from R with the largest number of line segments.
    13: use the least square method to fit the two lines in Step 12.
    14: calculate the intersection of two lines. That is the vanishing point.
    下载: 导出CSV

    表  2  直线检测方法比较

    Table  2.   Comparison of linear detection methods

    the degree
    of
    continuous
    the number of
    lines detected
    in x-direction
    the effective number
    of lines detected
    in x-direction
    the number of
    lines detected
    in y-direction
    the effective number
    of lines detected
    in y-direction
    run
    time/s
    Hough transform133000.021
    probabilistic Hough transform0105981100.014
    Cannylines0534431243.08
    our algorithm155554.61
    下载: 导出CSV
  • [1] De Muri M, Cavallin T, Pasqualotto R, et al. High energy flux thermo-mechanical test of 1D-carbon-carbon fibre composite prototypes for the SPIDER diagnostic calorimeter[J]. Review of Scientific Instruments, 2014, 85: 02A718. doi: 10.1063/1.4827655
    [2] 刘泽元, 尚永红, 林博颖, 等. 红外测温设备的空间环境影响及防护研究[J]. 电子测量与仪器学报, 2020, 34(4):165-171 doi: 10.13382/j.jemi.B1902645

    Liu Zeyuan, Shang Yonghong, Lin Boying, et al. Research on space environment influence and protection of infrared temperature measurement equipment[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(4): 165-171 doi: 10.13382/j.jemi.B1902645
    [3] Xu Yongjian, Zhang Li, Yu Ling, et al. Feasibility analysis of 1-D carbon material in application of negative particle beam diagnostics[J]. Fusion Science and Technology, 2018, 73(4): 533-538. doi: 10.1080/15361055.2017.1392820
    [4] Rizzolo A, Palma M D, De Muri M, et al. Design and analyses of a one-dimensional CFC calorimeter for SPIDER beam characterisation[J]. Fusion Engineering and Design, 2010, 85(10/12): 2268-2273.
    [5] 曾慧, 邓小明, 赵训坡, 等. 基于线对应的单应矩阵估计及其在视觉测量中的应用[J]. 自动化学报, 2007, 33(5):449-455 doi: 10.16383/j.aas.2007.05.001

    Zeng Hui, Deng Xiaoming, Zhao Xunpo, et al. Line-based homography estimation and its application in visual metrology[J]. Acta Automatica Sinica, 2007, 33(5): 449-455 doi: 10.16383/j.aas.2007.05.001
    [6] Zeng Hui, Deng Xiaoming, Hu Zhanyi. A new normalized method on line-based homography estimation[J]. Pattern Recognition Letters, 2008, 29(9): 1236-1244. doi: 10.1016/j.patrec.2008.01.031
    [7] Liu Tianyang, Xu Weiming, Yin Xiaodong, et al. Planar metric rectification from perspective image via vertical vanishing point[C]//2014 7th International Congress on Image and Signal Processing. 2014: 498-502.
    [8] Su Hongyu. Vanishing points in road recognition: a review[C]//11th International Symposium on Computational Intelligence and Design (ISCID). 2018: 132-136.
    [9] Tuytelaars T, Proesmans M, Van Gool L. The cascaded Hough transform[C]//Proceedings of International Conference on Image Processing. 1997: 736-739.
    [10] Chen Xuehui, Jia Ruiqing, Ren Hui, et al. A new vanishing point detection algorithm based on Hough transform[C]//Third International Joint Conference on Computational Science and Optimization. 2010: 440-443.
    [11] Zu Zhaozi, Hou Yingtuan, Cui Dixiao, et al. Real-time road detection with image texture analysis-based vanishing point estimation[C]//IEEE International Conference on Progress in Informatics and Computing (PIC). 2015: 454-457.
    [12] Rasmussen C. Texture-based vanishing point voting for road shape estimation[C]//Proceedings of the British Machine Vision Conference. 2004.
    [13] Stentiford F. Attention-based vanishing point detection[C]//International Conference on Image Processing. 2006: 417-420.
    [14] 吴曦. 基于MATLAB的图像边缘检测算法的研究和实现[D]. 长春: 吉林大学, 2014

    Wu Xi. Image edge detection based on MATLAB[D]. Changchun: Jilin University, 2014
    [15] Von Gioi R G, Jakubowicz J, Morel J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732. doi: 10.1109/TPAMI.2008.300
    [16] 曹义亲, 何恬, 刘龙标. 基于改进LSD直线检测算法的钢轨表面边界提取[J]. 华东交通大学学报, 2021, 38(3):95-101 doi: 10.16749/j.cnki.jecjtu.20210706.006

    Cao Yiqin, He Tian, Liu Longbiao. Rail surface boundary extraction based on improved LSD line detection algorithm[J]. Journal of East China Jiaotong University, 2021, 38(3): 95-101 doi: 10.16749/j.cnki.jecjtu.20210706.006
    [17] Li Mengxuan, Yang Zhi, Zhao Bin, et al. Research on transmission conductor extraction method based on mainline projection LSD algorithm[C]//2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). 2022: 747-750.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  207
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-09-23
  • 录用日期:  2022-10-24
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回