Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system
-
摘要: 定位系统是无人机核心单元中的电磁敏感环节,是无人机电磁防护的重点部位。为了分析电磁干扰效应机理与失效过程,以典型自组装无人机定位系统为目标,通过电磁拓扑模型分析干扰耦合方式,分析不同耦合路径下辐照干扰耦合机理和作用机制。采用GPS增强转发系统在电波暗室内为无人机系统提供正常动态工作环境,并依据标准开展微波辐照干扰效应试验,通过无人机系统固件中的日志记录功能,结合地面站监测实时状态,实现无人机定位系统电磁干扰效应全过程动态特征数据记录与故障机理分析。试验结果表明:无人机接收天线耦合干扰主要发生在定位系统最大接收带宽(200 MHz)之内;线缆耦合干扰主要在1 GHz以下的频段内且在171 MHz和511 MHz附近达到最大值;PCB电路耦合干扰主要在1.24 GHz以上频段,耦合电压波动性随着干扰信号频率增加而变强。Abstract: Positioning system is the electromagnetic sensitive part in the core unit of unmanned aerial vehicle (UAV) and the key part of UAV electromagnetic protection. To analyze the failure process and mechanism of electromagnetic interference, aiming at the positioning system of typical self-assembled UAV, the radiation coupling path is analyzed by constructing the electromagnetic topology and the radiation interference effects of different coupling paths of UAV positioning system are simulated and analyzed. The GPS enhanced forwarding system is used to provide a normal working environment for the UAV system in the anechoic chamber and the microwave irradiation interference effect experiment is carried out. Through the logging function in the UAV’s firmware, combined with the real-time monitoring data in ground station, the whole process data recording and fault mechanism analysis of the electromagnetic interference of the UAV positioning system are realized. The experimental results show that the coupling interference of the receiving antenna mainly occurs within the maximum receiving bandwidth (200 MHz) of the positioning system; Cable coupling interference mainly occurs in the frequency band below 1 GHz and reaches the maximum near 171 MHz and 511 MHz; The coupling interference of PCB circuit mainly occurs in the frequency band above 1.24 GHz and the fluctuation of coupling voltage becomes stronger with the increase of interference signal frequency.
-
表 1 敏感度扫描参数表
Table 1. Sensitivity scan parameters
frequency range/MHz maximum step size of frequency scan maximum frequency scan rate/s 2~30 0.01f0 0.00667/f0 30~200 0.005f0 0.00333/f0 200~1000 0.005f0 0.00333/f0 1000~3000 0.0025f0 0.00167/f0 -
[1] Greenwood W W, Lynch J P, Zekkos D. Applications of UAVs in civil infrastructure[J]. Journal of Infrastructure Systems, 2019, 25(2): 1-21. [2] Zhan Yilong, Chen Pengchao, Xu Weicheng, et al. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution[J]. Biosystems Engineering, 2022, 216: 32-45. doi: 10.1016/j.biosystemseng.2022.01.016 [3] Issam S M, Adnane A, Madiabdessalam A. Anti-Jamming techniques for aviation GNSS-based navigation systems: survey[C]//The 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS). Kenitra: IEEE, 2020: 1-4. [4] Chen Chen, Wei Yan, Yang Zhao, et al. Simulation and analysis of EMP transient electromagnetic effect of aircraft[J]. The Journal of Engineering, 2019, 2019(16): 2464-2467. doi: 10.1049/joe.2018.8615 [5] Lubkowski G, Lanzrath M, Lavau L C, et al. Response of the UAV sensor system to HPEM attacks[C]//International Symposium on Electromagnetic Compatibility. 2020: 1-6. [6] 张冬晓, 张大铭, 田庆民, 等. 无人机电磁辐照试验评价方法研究[J]. 军械工程学院学报, 2015, 27(3):28-32 doi: 10.3969/j.issn.1008-2956.2015.03.006Zhang Dongxiao, Zhang Daming, Tian Qingmin, et al. Research on evaluation method of UAV eletromagnetic radiation test[J]. Journal of Ordnance Engineering College, 2015, 27(3): 28-32 doi: 10.3969/j.issn.1008-2956.2015.03.006 [7] 杜宝舟, 陈亚洲, 程二威, 等. 某型无人机数据链连续波电磁辐照效应试验分析[J]. 微波学报, 2018, 34(2):86-91,96 doi: 10.14183/j.cnki.1005-6122.201802017Du Baozhou, Chen Yazhou, Cheng Erwei, et al. Experiment analysis of continuous wave electromagnetic irradiation effect for a certain type of UAV data link[J]. Journal of Microwaves, 2018, 34(2): 86-91,96 doi: 10.14183/j.cnki.1005-6122.201802017 [8] 张冬晓, 陈亚洲, 程二威, 等. 无人机动态数据链路电磁辐射效应试验[J]. 太赫兹科学与电子信息学报, 2020, 18(4):643-649 doi: 10.11805/TKYDA2019029Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Electromagnetic radiation effects on dynamic datalink of UAV[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(4): 643-649 doi: 10.11805/TKYDA2019029 [9] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001 doi: 10.11884/HPLPB201931.180365Zhao Tongcheng, Yu Daojie, Zhou Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365 [10] He Kai, Yu Daojie, Guo Baiseng, et al. An equivalent dynamic test system for immunity characterization of the UAV positioning module using bulk current injection method[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 161-164. doi: 10.1109/LEMCPA.2020.3037499 [11] 谢海燕. 瞬态电磁拓扑理论及其在电子系统电磁脉冲效应中的应用[D]. 北京: 清华大学, 2010: 14-17Xie Haiyan. Transient electromagnetic topology theory and its application in electromagnetic pulse effects of electronic systems[D]. Beijing: Tsinghua University, 2010: 14-17 [12] Shahparnia S, Ramahi O M. Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4): 580-587. doi: 10.1109/TEMC.2004.837671 [13] Radu S, Hockanson D. An investigation of PCB radiated emissions from simultaneous switching noise[C]//1999 IEEE International Symposium on Electromagnetic Compatability. Seattle, WA, USA: IEEE, 1999: 893-898. [14] 李新峰, 郝晓军, 韩慧, 等. 基于误码率的通信系统电磁干扰效应研究[J]. 微波学报, 2017, 33(1):71-76 doi: 10.14183/j.cnki.1005-6122.201701016Li Xinfeng, Hao Xiaojun, Han Hui, et al. Electromagnetic interference effect research of communication system based on SER[J]. Journal of Microwaves, 2017, 33(1): 71-76 doi: 10.14183/j.cnki.1005-6122.201701016 [15] u-blox. NEO-M8: u-blox M8 concurrent GNSS modules[EB/OL]. (2021-10-22).https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf. [16] Balanis C A. Antenna theory: analysis and design[M]. Hoboken: John Wiley & Sons, 2016. [17] GJB 151B-2013, 军用设备和分系统电磁发射和敏感度要求与测量[S]GJB 151B-2013, Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S] [18] 张淼艳, 张军, 朱衍波. 卫星导航系统HDOP和VDOP的研究[J]. 遥测遥控, 2009, 30(2):6-12 doi: 10.3969/j.issn.2095-1000.2009.02.002Zhang Miaoyan, Zhang Jun, Zhu Yanbo. Research on the HDOP and VDOP of satellite navigation systems[J]. Journal of Telemetry, Tracking and Command, 2009, 30(2): 6-12 doi: 10.3969/j.issn.2095-1000.2009.02.002 [19] 尚俊娜, 刘参. 一种顾及加权水平精度因子的室内宽带定位算法[J]. 中国惯性技术学报, 2018, 26(6):792-798 doi: 10.13695/j.cnki.12-1222/o3.2018.06.015Shang Junna, Liu Can. Broadband indoor localization algorithm taking into account weighted horizontal dilution of precision[J]. Journal of Chinese Inertial Technology, 2018, 26(6): 792-798 doi: 10.13695/j.cnki.12-1222/o3.2018.06.015