留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机定位系统辐照干扰失效全过程与机理分析

余道杰 贺凯 郭柏森 雷顺天 柴梦娟 王东 田周泰

余道杰, 贺凯, 郭柏森, 等. 无人机定位系统辐照干扰失效全过程与机理分析[J]. 强激光与粒子束, 2023, 35: 023002. doi: 10.11884/HPLPB202335.220196
引用本文: 余道杰, 贺凯, 郭柏森, 等. 无人机定位系统辐照干扰失效全过程与机理分析[J]. 强激光与粒子束, 2023, 35: 023002. doi: 10.11884/HPLPB202335.220196
Yu Daojie, He Kai, Guo Baisen, et al. Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system[J]. High Power Laser and Particle Beams, 2023, 35: 023002. doi: 10.11884/HPLPB202335.220196
Citation: Yu Daojie, He Kai, Guo Baisen, et al. Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system[J]. High Power Laser and Particle Beams, 2023, 35: 023002. doi: 10.11884/HPLPB202335.220196

无人机定位系统辐照干扰失效全过程与机理分析

doi: 10.11884/HPLPB202335.220196
基金项目: 国家自然科学基金项目(61871405)
详细信息
    作者简介:

    余道杰,yudj2003@163.com

    通讯作者:

    贺 凯,1400062702@pku.edu.cn

  • 中图分类号: TN972

Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system

  • 摘要: 定位系统是无人机核心单元中的电磁敏感环节,是无人机电磁防护的重点部位。为了分析电磁干扰效应机理与失效过程,以典型自组装无人机定位系统为目标,通过电磁拓扑模型分析干扰耦合方式,分析不同耦合路径下辐照干扰耦合机理和作用机制。采用GPS增强转发系统在电波暗室内为无人机系统提供正常动态工作环境,并依据标准开展微波辐照干扰效应试验,通过无人机系统固件中的日志记录功能,结合地面站监测实时状态,实现无人机定位系统电磁干扰效应全过程动态特征数据记录与故障机理分析。试验结果表明:无人机接收天线耦合干扰主要发生在定位系统最大接收带宽(200 MHz)之内;线缆耦合干扰主要在1 GHz以下的频段内且在171 MHz和511 MHz附近达到最大值;PCB电路耦合干扰主要在1.24 GHz以上频段,耦合电压波动性随着干扰信号频率增加而变强。
  • 图  1  无人机定位系统电气功能结构示意图

    Figure  1.  Electrical function structure diagram of UAV positioning system

    图  2  无人机定位系统电磁拓扑模型

    Figure  2.  Electromagnetic topology model of UAV positioning system

    图  3  定位系统接收天线CST仿真模型

    Figure  3.  CST simulation model of receiving antenna in positioning system

    图  4  定位系统接收天线S11参数

    Figure  4.  S11 parameter of receiving antenna of positioning system

    图  5  定位系统PCB耦合电磁干扰效应CST仿真模型

    Figure  5.  Simulation model of the EMI effect of PCB coupling path

    图  6  定位系统PCB耦合干扰电压波动情况

    Figure  6.  PCB coupled voltage variation of key points in the PCB circuit

    图  7  定位系统连接线缆CST仿真模型

    Figure  7.  Positioning system cable CST simulation model

    图  8  定位系统线缆耦合干扰电压波动情况

    Figure  8.  Cable model of positioning system in CST simulation

    图  9  无人机定位系统辐照干扰等效试验系统原理图

    Figure  9.  Equivalent test system of RFI for UAV positioning system

    图  10  辐照干扰等效试验系统图

    Figure  10.  RFI experimental equipment for UAV positioning system

    图  11  无人机定位系统故障频率分布特征图

    Figure  11.  Failure frequency distribution of UAV positioning system

    图  12  偶然事件的随机故障

    Figure  12.  Random failure caused by accidental events

    图  13  无人机定位系统三种典型故障局部频点状态图

    Figure  13.  Schematic diagram of three typical failures for UAV positioning system

    表  1  敏感度扫描参数表

    Table  1.   Sensitivity scan parameters

    frequency range/MHzmaximum step size of frequency scanmaximum frequency scan rate/s
    2~300.01f00.00667/f0
    30~2000.005f00.00333/f0
    200~10000.005f00.00333/f0
    1000~30000.0025f00.00167/f0
    下载: 导出CSV
  • [1] Greenwood W W, Lynch J P, Zekkos D. Applications of UAVs in civil infrastructure[J]. Journal of Infrastructure Systems, 2019, 25(2): 1-21.
    [2] Zhan Yilong, Chen Pengchao, Xu Weicheng, et al. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution[J]. Biosystems Engineering, 2022, 216: 32-45. doi: 10.1016/j.biosystemseng.2022.01.016
    [3] Issam S M, Adnane A, Madiabdessalam A. Anti-Jamming techniques for aviation GNSS-based navigation systems: survey[C]//The 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS). Kenitra: IEEE, 2020: 1-4.
    [4] Chen Chen, Wei Yan, Yang Zhao, et al. Simulation and analysis of EMP transient electromagnetic effect of aircraft[J]. The Journal of Engineering, 2019, 2019(16): 2464-2467. doi: 10.1049/joe.2018.8615
    [5] Lubkowski G, Lanzrath M, Lavau L C, et al. Response of the UAV sensor system to HPEM attacks[C]//International Symposium on Electromagnetic Compatibility. 2020: 1-6.
    [6] 张冬晓, 张大铭, 田庆民, 等. 无人机电磁辐照试验评价方法研究[J]. 军械工程学院学报, 2015, 27(3):28-32 doi: 10.3969/j.issn.1008-2956.2015.03.006

    Zhang Dongxiao, Zhang Daming, Tian Qingmin, et al. Research on evaluation method of UAV eletromagnetic radiation test[J]. Journal of Ordnance Engineering College, 2015, 27(3): 28-32 doi: 10.3969/j.issn.1008-2956.2015.03.006
    [7] 杜宝舟, 陈亚洲, 程二威, 等. 某型无人机数据链连续波电磁辐照效应试验分析[J]. 微波学报, 2018, 34(2):86-91,96 doi: 10.14183/j.cnki.1005-6122.201802017

    Du Baozhou, Chen Yazhou, Cheng Erwei, et al. Experiment analysis of continuous wave electromagnetic irradiation effect for a certain type of UAV data link[J]. Journal of Microwaves, 2018, 34(2): 86-91,96 doi: 10.14183/j.cnki.1005-6122.201802017
    [8] 张冬晓, 陈亚洲, 程二威, 等. 无人机动态数据链路电磁辐射效应试验[J]. 太赫兹科学与电子信息学报, 2020, 18(4):643-649 doi: 10.11805/TKYDA2019029

    Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Electromagnetic radiation effects on dynamic datalink of UAV[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(4): 643-649 doi: 10.11805/TKYDA2019029
    [9] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001 doi: 10.11884/HPLPB201931.180365

    Zhao Tongcheng, Yu Daojie, Zhou Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365
    [10] He Kai, Yu Daojie, Guo Baiseng, et al. An equivalent dynamic test system for immunity characterization of the UAV positioning module using bulk current injection method[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 161-164. doi: 10.1109/LEMCPA.2020.3037499
    [11] 谢海燕. 瞬态电磁拓扑理论及其在电子系统电磁脉冲效应中的应用[D]. 北京: 清华大学, 2010: 14-17

    Xie Haiyan. Transient electromagnetic topology theory and its application in electromagnetic pulse effects of electronic systems[D]. Beijing: Tsinghua University, 2010: 14-17
    [12] Shahparnia S, Ramahi O M. Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4): 580-587. doi: 10.1109/TEMC.2004.837671
    [13] Radu S, Hockanson D. An investigation of PCB radiated emissions from simultaneous switching noise[C]//1999 IEEE International Symposium on Electromagnetic Compatability. Seattle, WA, USA: IEEE, 1999: 893-898.
    [14] 李新峰, 郝晓军, 韩慧, 等. 基于误码率的通信系统电磁干扰效应研究[J]. 微波学报, 2017, 33(1):71-76 doi: 10.14183/j.cnki.1005-6122.201701016

    Li Xinfeng, Hao Xiaojun, Han Hui, et al. Electromagnetic interference effect research of communication system based on SER[J]. Journal of Microwaves, 2017, 33(1): 71-76 doi: 10.14183/j.cnki.1005-6122.201701016
    [15] u-blox. NEO-M8: u-blox M8 concurrent GNSS modules[EB/OL]. (2021-10-22).https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf.
    [16] Balanis C A. Antenna theory: analysis and design[M]. Hoboken: John Wiley & Sons, 2016.
    [17] GJB 151B-2013, 军用设备和分系统电磁发射和敏感度要求与测量[S]

    GJB 151B-2013, Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]
    [18] 张淼艳, 张军, 朱衍波. 卫星导航系统HDOP和VDOP的研究[J]. 遥测遥控, 2009, 30(2):6-12 doi: 10.3969/j.issn.2095-1000.2009.02.002

    Zhang Miaoyan, Zhang Jun, Zhu Yanbo. Research on the HDOP and VDOP of satellite navigation systems[J]. Journal of Telemetry, Tracking and Command, 2009, 30(2): 6-12 doi: 10.3969/j.issn.2095-1000.2009.02.002
    [19] 尚俊娜, 刘参. 一种顾及加权水平精度因子的室内宽带定位算法[J]. 中国惯性技术学报, 2018, 26(6):792-798 doi: 10.13695/j.cnki.12-1222/o3.2018.06.015

    Shang Junna, Liu Can. Broadband indoor localization algorithm taking into account weighted horizontal dilution of precision[J]. Journal of Chinese Inertial Technology, 2018, 26(6): 792-798 doi: 10.13695/j.cnki.12-1222/o3.2018.06.015
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  877
  • HTML全文浏览量:  292
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-09-30
  • 网络出版日期:  2022-10-09
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回