留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对非线性康普顿散射几种改进物理模型的比较

张博 张智猛 周维民

张博, 张智猛, 周维民. 对非线性康普顿散射几种改进物理模型的比较[J]. 强激光与粒子束, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204
引用本文: 张博, 张智猛, 周维民. 对非线性康普顿散射几种改进物理模型的比较[J]. 强激光与粒子束, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204
Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204
Citation: Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204

对非线性康普顿散射几种改进物理模型的比较

doi: 10.11884/HPLPB202335.220204
基金项目: 国家自然科学基金项目(11805181);国家重点研发项目(2018YFA0404804);科学挑战计划项目(TZ2016005)
详细信息
    作者简介:

    张 博,zhangbolfrc@caep.cn

  • 中图分类号: TN241

Comparison of different improvements to mainstream model of nonlinear Compton scattering

  • 摘要: 非线性康普顿散射被认为是未来超短超强激光与物质相互作用中的主导性物理过程之一。目前大多数相关研究都基于一种主流的非线性康普顿散射物理模型,该模型假设辐射形成距离足够短、对初态和末态自旋求平均与求和、并忽略了参与散射的激光光子的能动量。近年来,一些研究为了在更广阔的参数空间内,更准确地描述非线性康普顿散射,也对这个主流物理模型提出了几种修正和改进。回顾了对非线性康普顿散射主流物理模型进行的几种改进和修正,介绍了它们的适用范围,分析了它们的基本性质并对其物理效应进行了简单讨论。
  • 图  1  $ k $$ p $$ a $之间的几何关系与角度定义

    Figure  1.  Geometry of $ k $, $ p $ and $ a $

    图  2  参与非线性康普顿散射的激光光子能动量对产生的伽马光子的发射角度的影响。ρ为正(a)和负(b)的分支中辐射出的伽马光子与电子初始方向的夹角,参数为电子初始能量为2 GeV,φ=π/6,撞击的激光波长1 μm,横坐标给出的功率密度为瞬时功率密度。作为对比,目前的主流模型假设该发射角为0

    Figure  2.  Effects of involved laser photons in nonlinear Compton scattering on the emission angle of gamma photon

    图  3  参与非线性康普顿散射的激光光子能动量对产生的伽马光子的能谱的影响

    Figure  3.  Effects of involved laser photons in nonlinear Compton scattering on the spectrum of emitted gamma photon

    图  4  无偏振电子与线偏振激光通过非线性康普顿散射产生的伽马光子的线偏振度随δ的变化趋势

    Figure  4.  Linear polarization rate of gamma photons emitted through NCS of linearly polarized laser with un-polarized electrons

    图  5  对比准确理论与LCFA理论给出的非线性康普顿散射产生的伽马低能段能谱

    Figure  5.  Comparison of exact and LCCFA predictions of the low energy part of NCS spectrum

  • [1] Danson C N, Brummitt P A, Clarke R J, et al. Vulcan Petawatt—an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S246. doi: 10.1088/0029-5515/44/12/S15
    [2] Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [3] Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 2018, 26(20): 26776-26786. doi: 10.1364/OE.26.026776
    [4] Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 2015, 3: e2. doi: 10.1017/hpl.2014.41
    [5] Gales S, Tanaka K A, Balabanski D L, et al. The extreme light infrastructure nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams[J]. Reports on Progress in Physics, 2018, 81: 094301. doi: 10.1088/1361-6633/aacfe8
    [6] Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
    [7] Cartlidge E. The light fantastic[J]. Science, 2018, 359(6374): 382-385. doi: 10.1126/science.359.6374.382
    [8] Tiwari G, Gaul E, Martinez M, et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022W/cm2[J]. Optics Letters, 2019, 44(11): 2764-2767. doi: 10.1364/OL.44.002764
    [9] Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
    [10] Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [11] Pirozhkov A S, Fukuda Y, Nishiuchi M, et al. Approaching the diffraction-limited, bandwidth-limited petawatt[J]. Optics Express, 2017, 25(17): 20486-20501. doi: 10.1364/OE.25.020486
    [12] Yoon J W, Jeon C, Shin J, et al. Achieving the laser intensity of 5.5×1022W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 2019, 27(15): 20412-20420. doi: 10.1364/OE.27.020412
    [13] Yoon J W, Yoon J W, Kim Y G, et al. Realization of laser intensity over 1023W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [14] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [15] Jackson J D. Classical electrodynamics[M]. New York: Wiley Press, 1975.
    [16] Landau L D, Lifshitz E M. The classical theory of fields[M]. Oxford: Pergamon Press, 1975.
    [17] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [18] Klein J J, Nigam B P. Birefringence of the vacuum[J]. Physical Review, 1964, 135(5B): B1279-B1280. doi: 10.1103/PhysRev.135.B1279
    [19] Adler S L, Bahcall J N, Callan C G, et al. Photon splitting in a strong magnetic field[J]. Physical Review Letters, 1970, 25(15): 1061-1065. doi: 10.1103/PhysRevLett.25.1061
    [20] Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
    [21] Zhang Bo, Zhang Zhimeng, Hong Wei, et al. Vacuum radiation induced by time dependent electric field[J]. Physics Letters B, 2017, 767: 431-436. doi: 10.1016/j.physletb.2017.01.076
    [22] Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 2006, 78(2): 591-640. doi: 10.1103/RevModPhys.78.591
    [23] Ehlotzky F, Krajewska K, Kamiński J Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power[J]. Reports on Progress in Physics, 2009, 72: 046401. doi: 10.1088/0034-4885/72/4/046401
    [24] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [25] Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. The European Physical Journal Special Topics, 2014, 223(6): 979-984. doi: 10.1140/epjst/e2014-02148-4
    [26] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [27] Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [28] Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
    [29] Wistisen T N, Di Piazza A, Nielsen C F, et al. Quantum radiation reaction in aligned crystals beyond the local constant field approximation[J]. Physical Review Research, 2019, 1: 033014. doi: 10.1103/PhysRevResearch.1.033014
    [30] Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Part II[J]. Zh. Eksp. Teor. Fiz, 1964, 46: 776.
    [31] Nikishov A I, Ritus V I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field[J]. Soviet Physics JETP, 1967, 25(6): 1135-1142.
    [32] Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [33] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [34] Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [35] Duclous R, Kirk J G, Bell A R. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions[J]. Plasma Physics and Controlled Fusion, 2011, 53: 015009. doi: 10.1088/0741-3335/53/1/015009
    [36] Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
    [37] Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 2014, 260: 273-285. doi: 10.1016/j.jcp.2013.12.007
    [38] Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Effects of involved laser photons on radiation and electron-positron pair production in one coherence interval in ultra intense lasers[J]. Scientific Reports, 2018, 8: 16862. doi: 10.1038/s41598-018-35312-8
    [39] Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Quantum mechanisms of electron and positron acceleration through nonlinear Compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime[J]. Scientific Reports, 2019, 9: 18876. doi: 10.1038/s41598-019-55472-5
    [40] Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [41] Li Yanfei, Shaisultanov R, Chen Y Y, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [42] Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [43] McMaster W H. Matrix representation of polarization[J]. Reviews of Modern Physics, 1961, 33(1): 8-27. doi: 10.1103/RevModPhys.33.8
    [44] Baier V N, Katkov V M, Strakhovenko V M. Quantum radiation theory in inhomogeneous external fields[J]. Nuclear Physics B, 1989, 328(2): 387-405. doi: 10.1016/0550-3213(89)90334-9
    [45] Dinu V, Harvey C, Ilderton A, et al. Quantum radiation reaction: from interference to incoherence[J]. Physical Review Letters, 2016, 116: 044801. doi: 10.1103/PhysRevLett.116.044801
    [46] Di Piazza A, Tamburini M, Meuren S, et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation[J]. Physical Review A, 2018, 98: 012134. doi: 10.1103/PhysRevA.98.012134
  • 加载中
图(5)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  317
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-10-17
  • 网络出版日期:  2022-10-22
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回