Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target
-
摘要: 激光驱动的正电子源具有高产额、短脉宽、高能量的优点。采用粒子模拟和蒙特卡罗模拟相结合的方法,对相对论飞秒激光与表面具有微米丝阵结构的调制靶相互作用产生正电子束的过程进行了全三维的模拟研究。结果表明,在激光能量约3.2 J、脉宽约为40 fs的情况下,可得到产额为1011量级、最大能量达120 MeV的超热电子束,其轰击高Z转换靶可达到产额为109量级、截止能量约50 MeV的正电子,且正电子的发散角仅为4.92°。相比于平板靶,表面调制靶的使用可以提高正电子的产额、能量和定向性。
-
关键词:
- 激光等离子体相互作用 /
- 表面调制靶 /
- 正电子 /
- 飞秒激光
Abstract: Laser driven positron source has the advantages of high yield, short pulse width and high energy. In this paper, particle-in-cell simulation and Monte-Carlo simulation are combined to simulate the process of positron production in the interaction of relativistic femtosecond laser with a micro-structured surface target (MST) with a micron-scale wire array on the surface. The results show that when the laser energy is about 6 J and the pulse width is about 40 fs, fast electrons with the yield of 1011 orders of magnitude and the cut-off energy of about 120 MeV can be obtained. When the electrons bombard a high-Z conversion target, positrons with the yield of 109 orders of magnitude, and cut-off energy about 50 MeV are obtained. The divergence angle of the positron beam is 4.92°. Compared with planar targets, the use of MSTs can benefit the yield, energy and directivity of positrons.-
Key words:
- laser plasma interaction /
- micro-structured surface target /
- positron /
- femtosecond laser
-
表 1 不同方案正电子束参数对比
Table 1. Comparison of positron beam parameters in different schemes
target laser energy/J pulse duration/fs cut-off energy of e+/MeV divergence of e+/(°) yield of e+ wire array (this article) 3.2 40 50 ~4.92 $ 8.9\times {10}^{9} $ wire array[22] 500 700 80 not given $ {10}^{12} $ gas (via wake field acceleration)[18] 14 42 600 ~1.1 $ 3\times {10}^{7} $ planar target[15] 812 10000 20 ~20 $ 1.8\times {10}^{11} $ -
[1] Adam J, Adamczyk L, Adams J R, et al. Measurement of e+ e− momentum and angular distributions from linearly polarized photon collisions[J]. Physical Review Letters, 2021, 127: 052302. doi: 10.1103/PhysRevLett.127.052302 [2] Guessoum N. Positron astrophysics and areas of relation to low-energy positron physics[J]. The European Physical Journal D, 2014, 68: 137. doi: 10.1140/epjd/e2014-40705-7 [3] Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580-589. doi: 10.1038/nature06917 [4] Mayer J, Hugenschmidt C, Schreckenbach K. Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy[J]. Physical Review Letters, 2010, 105: 207401. doi: 10.1103/PhysRevLett.105.207401 [5] Nakashima K, Cowan T E, Takabe H. Electron-positron pair production by ultra-intense lasers[J]. AIP Conference Proceedings, 2002, 634(1): 323-328. [6] Müller C. Nonlinear Bethe-Heitler pair creation with attosecond laser pulses at the LHC[J]. Physics Letters B, 2009, 672(1): 56-60. doi: 10.1016/j.physletb.2009.01.009 [7] Krajewska K, Kamiński J Z. Breit-Wheeler process in intense short laser pulses[J]. Physical Review A, 2012, 86: 052104. doi: 10.1103/PhysRevA.86.052104 [8] 朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70:085202 doi: 10.7498/aps.70.20202224Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224 [9] Gryaznykh D A, Kandiev Y Z, Lykov V A. Estimates of electron-positron pair production in the interaction of high-power laser radiation with high-Z targets[J]. Journal of Experimental and Theoretical Physics Letters, 1998, 67(4): 257-262. doi: 10.1134/1.567660 [10] Myatt J, Delettrez J A, Maximov A V, et al. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation[J]. Physical Review E, 2009, 79: 066409. doi: 10.1103/PhysRevE.79.066409 [11] Nakashima K, Takabe H. Numerical study of pair creation by ultraintense lasers[J]. Physics of Plasmas, 2002, 9(5): 1505-1512. doi: 10.1063/1.1464145 [12] 闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006 [13] Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001 [14] Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003 [15] Wu Yuchi, Dong Kegong, Yan Yonghong, et al. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII[J]. High Energy Density Physics, 2017, 23: 115-118. doi: 10.1016/j.hedp.2017.03.006 [16] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002 [17] Sarri G, Poder K, Cole J M, et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory[J]. Nature Communications, 2015, 6: 6747. doi: 10.1038/ncomms7747 [18] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 2010, 17: 043103. doi: 10.1063/1.3360298 [19] Jiang Sheng, Ji Liangliang, Audesirk H, et al. Microengineering laser plasma interactions at relativistic intensities[J]. Physical Review Letters, 2016, 116: 085002. doi: 10.1103/PhysRevLett.116.085002 [20] Wang Yechen, Yin Yan, Wang Weiquan, et al. Copious positron production by femto-second laser via absorption enhancement in a microstructured surface target[J]. Scientific Reports, 2020, 10: 5861. doi: 10.1038/s41598-020-61964-6 [21] Jiang Sheng, Link A, Canning D, et al. Enhancing positron production using front surface target structures[J]. Applied Physics Letters, 2021, 118: 094101. doi: 10.1063/5.0038222 [22] Hu Lixiang, Yu Tongpu, Sheng Zhengming, et al. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses[J]. Scientific Reports, 2018, 8: 7282. doi: 10.1038/s41598-018-25421-9 [23] Ridgers C O, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006 [24] Böhlen T T, Cerutti F, Chin M P W, et al. The FLUKA code: developments and challenges for high energy and medical applications[J]. Nuclear Data Sheets, 2014, 120: 211-214. doi: 10.1016/j.nds.2014.07.049