留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论飞秒激光辐照表面调制靶产生高定向性正电子束

王叶晨 王伟权 余同普 邵福球 银燕

王叶晨, 王伟权, 余同普, 等. 相对论飞秒激光辐照表面调制靶产生高定向性正电子束[J]. 强激光与粒子束, 2023, 35: 012005. doi: 10.11884/HPLPB202335.220216
引用本文: 王叶晨, 王伟权, 余同普, 等. 相对论飞秒激光辐照表面调制靶产生高定向性正电子束[J]. 强激光与粒子束, 2023, 35: 012005. doi: 10.11884/HPLPB202335.220216
Wang Yechen, Wang Weiquan, Yu Tongpu, et al. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35: 012005. doi: 10.11884/HPLPB202335.220216
Citation: Wang Yechen, Wang Weiquan, Yu Tongpu, et al. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35: 012005. doi: 10.11884/HPLPB202335.220216

相对论飞秒激光辐照表面调制靶产生高定向性正电子束

doi: 10.11884/HPLPB202335.220216
基金项目: 国家自然科学基金金面上项目(11774430);国家重点研发计划项目(2018YFA0404800);湖南省自科基金面上项目(2022JJ30656)
详细信息
    作者简介:

    王叶晨,wangyechen9567@163.com

    通讯作者:

    银 燕,yyin@nudt.edu.cn

  • 中图分类号: O437; O536; O572.2

Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target

  • 摘要: 激光驱动的正电子源具有高产额、短脉宽、高能量的优点。采用粒子模拟和蒙特卡罗模拟相结合的方法,对相对论飞秒激光与表面具有微米丝阵结构的调制靶相互作用产生正电子束的过程进行了全三维的模拟研究。结果表明,在激光能量约3.2 J、脉宽约为40 fs的情况下,可得到产额为1011量级、最大能量达120 MeV的超热电子束,其轰击高Z转换靶可达到产额为109量级、截止能量约50 MeV的正电子,且正电子的发散角仅为4.92°。相比于平板靶,表面调制靶的使用可以提高正电子的产额、能量和定向性。
  • 图  1  激光分别和两种靶型相互作用的三维模拟

    Figure  1.  3D simulations of interaction between laser and two types of target

    图  2  $ t=13{T}_{0} $时刻的电磁场分布和电子的相空间分布

    Figure  2.  Electromagnetic field distribution and phase space distribution of electrons at$t=13{T}_{0}$

    图  3  前向运动电子的角分布

    Figure  3.  Angular distribution of forward moving electrons

    图  4  MST靶和平面靶所产生的电子能谱和正电子能谱

    Figure  4.  Energy spectrum of electrons and positrons produced by the MST and planar target

    图  5  正电子通量分布图及正电子角分布

    Figure  5.  Positron flux distribution and angular distribution

    表  1  不同方案正电子束参数对比

    Table  1.   Comparison of positron beam parameters in different schemes

    targetlaser energy/Jpulse duration/fscut-off energy of e+/MeVdivergence of e+/(°)yield of e+
    wire array (this article)3.24050~4.92$ 8.9\times {10}^{9} $
    wire array[22]50070080not given$ {10}^{12} $
    gas (via wake field acceleration)[18]1442600~1.1$ 3\times {10}^{7} $
    planar target[15]8121000020~20$ 1.8\times {10}^{11} $
    下载: 导出CSV
  • [1] Adam J, Adamczyk L, Adams J R, et al. Measurement of e+ e momentum and angular distributions from linearly polarized photon collisions[J]. Physical Review Letters, 2021, 127: 052302. doi: 10.1103/PhysRevLett.127.052302
    [2] Guessoum N. Positron astrophysics and areas of relation to low-energy positron physics[J]. The European Physical Journal D, 2014, 68: 137. doi: 10.1140/epjd/e2014-40705-7
    [3] Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580-589. doi: 10.1038/nature06917
    [4] Mayer J, Hugenschmidt C, Schreckenbach K. Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy[J]. Physical Review Letters, 2010, 105: 207401. doi: 10.1103/PhysRevLett.105.207401
    [5] Nakashima K, Cowan T E, Takabe H. Electron-positron pair production by ultra-intense lasers[J]. AIP Conference Proceedings, 2002, 634(1): 323-328.
    [6] Müller C. Nonlinear Bethe-Heitler pair creation with attosecond laser pulses at the LHC[J]. Physics Letters B, 2009, 672(1): 56-60. doi: 10.1016/j.physletb.2009.01.009
    [7] Krajewska K, Kamiński J Z. Breit-Wheeler process in intense short laser pulses[J]. Physical Review A, 2012, 86: 052104. doi: 10.1103/PhysRevA.86.052104
    [8] 朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70:085202 doi: 10.7498/aps.70.20202224

    Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224
    [9] Gryaznykh D A, Kandiev Y Z, Lykov V A. Estimates of electron-positron pair production in the interaction of high-power laser radiation with high-Z targets[J]. Journal of Experimental and Theoretical Physics Letters, 1998, 67(4): 257-262. doi: 10.1134/1.567660
    [10] Myatt J, Delettrez J A, Maximov A V, et al. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation[J]. Physical Review E, 2009, 79: 066409. doi: 10.1103/PhysRevE.79.066409
    [11] Nakashima K, Takabe H. Numerical study of pair creation by ultraintense lasers[J]. Physics of Plasmas, 2002, 9(5): 1505-1512. doi: 10.1063/1.1464145
    [12] 闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006

    Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
    [13] Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
    [14] Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
    [15] Wu Yuchi, Dong Kegong, Yan Yonghong, et al. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII[J]. High Energy Density Physics, 2017, 23: 115-118. doi: 10.1016/j.hedp.2017.03.006
    [16] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [17] Sarri G, Poder K, Cole J M, et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory[J]. Nature Communications, 2015, 6: 6747. doi: 10.1038/ncomms7747
    [18] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 2010, 17: 043103. doi: 10.1063/1.3360298
    [19] Jiang Sheng, Ji Liangliang, Audesirk H, et al. Microengineering laser plasma interactions at relativistic intensities[J]. Physical Review Letters, 2016, 116: 085002. doi: 10.1103/PhysRevLett.116.085002
    [20] Wang Yechen, Yin Yan, Wang Weiquan, et al. Copious positron production by femto-second laser via absorption enhancement in a microstructured surface target[J]. Scientific Reports, 2020, 10: 5861. doi: 10.1038/s41598-020-61964-6
    [21] Jiang Sheng, Link A, Canning D, et al. Enhancing positron production using front surface target structures[J]. Applied Physics Letters, 2021, 118: 094101. doi: 10.1063/5.0038222
    [22] Hu Lixiang, Yu Tongpu, Sheng Zhengming, et al. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses[J]. Scientific Reports, 2018, 8: 7282. doi: 10.1038/s41598-018-25421-9
    [23] Ridgers C O, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
    [24] Böhlen T T, Cerutti F, Chin M P W, et al. The FLUKA code: developments and challenges for high energy and medical applications[J]. Nuclear Data Sheets, 2014, 120: 211-214. doi: 10.1016/j.nds.2014.07.049
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  281
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-11-07
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回