留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术

李永龙 袁雪林 刘九龙 陈正坤 戴志强

李永龙, 袁雪林, 刘九龙, 等. 基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术[J]. 强激光与粒子束, 2023, 35: 033006. doi: 10.11884/HPLPB202335.220225
引用本文: 李永龙, 袁雪林, 刘九龙, 等. 基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术[J]. 强激光与粒子束, 2023, 35: 033006. doi: 10.11884/HPLPB202335.220225
Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006. doi: 10.11884/HPLPB202335.220225
Citation: Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006. doi: 10.11884/HPLPB202335.220225

基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术

doi: 10.11884/HPLPB202335.220225
基金项目: 广东省重点领域研发计划项目(2019B111101001); 国防科技创新特区项目(20-163-OO-KX-003-001-02)
详细信息
    作者简介:

    李永龙,liylong27@mail2.sysu.edu.cn

    通讯作者:

    袁雪林,yuanxlin3@mail.sysu.edu.cn

  • 中图分类号: TN972

Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites

  • 摘要: 随着抗干扰技术的不断发展和进步,以阻塞式和欺骗式干扰为代表的传统干扰技术面临挑战。为此,提出了一种基于低轨卫星的分布式超宽带电磁脉冲干扰技术,相比于传统干扰机,超宽带电磁脉冲干扰是一种新型电磁攻击体制。首先,理论推导了重频超宽带电磁脉冲的功率谱;其次,对分布式干扰技术可行性进行分析,并计算了基于低轨卫星平台的分布式干扰所需的发射功率;最后,开展了针对导航接收机低噪放的超宽带电磁脉冲效应实验,并利用STK(Satellite Tool Kit)设计了中低纬度下用于搭载超宽带电磁脉冲干扰机的低轨卫星星座布局。实验结果表明,UWB电磁脉冲可以使低噪声放大器出现暂时增益压缩现象,脉宽为0.7 ns的单脉冲可以使导航信号经过低噪声放大器后被压制近400 ns,重频形式下可以实现信号的完全压制。因此,基于低轨卫星的分布式超宽带电磁脉冲干扰体系可以有效增强干扰效果,有望实现目标区域的全覆盖。
  • 图  1  T=1 ns, fprf=1 MHz时的UWB电磁脉冲序列时频特性

    Figure  1.  Time-frequency characteristics of UWB pulse sequence at T=1 ns and fprf=1 MHz

    图  2  导航接收机射频前端框图

    Figure  2.  Block diagram of the RF front-end of the navigation receiver

    图  3  放大器的非线性压缩示意图

    Figure  3.  Schematic diagram of nonlinear compression of amplifier

    图  4  分布式UWB电磁脉冲干扰体系示意图

    Figure  4.  Schematic diagram of distributed UWB pulse jamming system

    图  5  Marx电路原理图

    Figure  5.  Schematic of Marx circuit

    图  6  UWB电磁脉冲源核心电路

    Figure  6.  Core circuit of UWB electromagnetic pulse source

    图  7  60 dB衰减后UWB输出波形

    Figure  7.  UWB output waveform after 60 dB attenuation

    图  8  LNA效应实验

    Figure  8.  LNA jamming effect experiment

    图  9  星座设计

    Figure  9.  Constellation design

    图  10  卫星覆盖重数

    Figure  10.  Multi-coverage of satellites

    表  1  h=500 km, α=28°时,各干信比下的所需最小合成功率

    Table  1.   Minimum synthetic power required under different JSR at h=500 km and α=28°

    (J/S)/dBminimum synthetic power/dBW
    306.97
    9066.97
    125101.97
    下载: 导出CSV

    表  2  中低纬度卫星覆盖重数

    Table  2.   Multi-coverage of mid-low latitudes satellite

    latitude/(°)minimum visible satellitesmaximum visible satellitesaverage visible satellites
    031.03936.2
    103441.137.2
    2031.039.136.2
    3045.053.049.2
    4068.075.071.5
    5064.071.067.6
    6043.050.046.2
    下载: 导出CSV
  • [1] Yan Dashuang, Ni Shuyan. Overview of anti-jamming technologies for satellite navigation systems[C]//Proceedings of 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 2022: 118-124.
    [2] Huang Xin, Chen Yazhou, Wang Yuming. Simulation of interference effects of UWB pulse signal to the GPS receiver[J]. Discrete Dynamics in Nature and Society, 2021, 2021: 9935543.
    [3] 石玉彬. 分布式干扰技术研究[D]. 西安: 西安电子科技大学, 2013

    Shi Yubin. The study of distributed jamming[D]. Xi'an: Xidian University, 2013
    [4] 田明浩. 星载GPS相关干扰技术研究[D]. 南京: 南京理工大学, 2008

    Tian Minghao. Research on the technology of correlation interference for GPS based on the star carry platform[D]. Nanjing: Nanjing University of Science and Technology, 2008
    [5] Zhang Zhengyi, Tao Mingliang, Gong Yanyun, et al. Performance evaluation for UAV-based distributed jamming system: an illustrative example[C]//Proceedings of 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT). 2021: 441-444.
    [6] 杨勇. 防空反导雷达干扰与评估研究[D]. 西安: 西安电子科技大学, 2019

    Yang Yong. Research on jamming and evaluation of air defense and anti-missile radar[D]. Xi’an: Xidian University, 2019
    [7] Luo Zhaoyi, Deng Min, Yao Zhiqiang, et al. Distributed blanket jamming resource scheduling for satellite navigation based on particle swarm optimization and genetic algorithm[C]//Proceedings of 2020 IEEE 20th International Conference on Communication Technology (ICCT). 2020: 611-616.
    [8] 杨猛, 宁辉, 张永栋, 等. 重频超宽带脉冲干扰低噪声放大器[J]. 强激光与粒子束, 2015, 27:083004 doi: 10.11884/HPLPB201527.083004

    Yang Meng, Ning Hui, Zhang Yongdong, et al. Interference effects of repetitive ultra-wideband pulses on low noise amplifier[J]. High Power Laser and Particle Beams, 2015, 27: 083004 doi: 10.11884/HPLPB201527.083004
    [9] 孙正淳. 基于雪崩三极管Marx脉冲源的抖动抑制与峰值功率合成[D]. 成都: 电子科技大学, 2021

    Sun Zhengchun. Jitter suppression and peak power synthesis based on avalanche transistor Marx pulse source[D]. Chengdu: University of Electronic Science and Technology of China, 2021
    [10] 张凯轩, 郭承军. GNSS导航接收机射频前端技术综述[C]//第十一届中国卫星导航年会. 2020

    Zhang Kaixuan, Guo Chengjun. Overview of RF front end technology for GNSS navigation receiver[C]//Proceedings of the 11th China Satellite Navigation Annual Conference. 2020
    [11] Qin Yingshuo, Chai Changchun, Li Fuxing, et al. Study of self-heating and high-power microwave effects for enhancement-mode p-gate GaN HEMT[J]. Micromachines, 2022, 13: 106. doi: 10.3390/mi13010106
    [12] Li Fuxing, Chai Changchun, Wu Han, et al. Study on high power microwave nonlinear effects and degradation characteristics of C-band low noise amplifier[J]. Microelectronics Reliability, 2022, 128: 114427. doi: 10.1016/j.microrel.2021.114427
    [13] Lin Qian, Jia Lining, Wu Haifeng, et al. Investigation on temperature behavior for a GaAs E-pHEMT MMIC LNA[J]. Micromachines, 2022, 13: 1121. doi: 10.3390/mi13071121
    [14] 袁健锋, 陈正坤, 蔡佳炜, 等. 基于超宽带电磁脉冲的导航干扰[C]//第七届全国脉冲功率会议暨第八届全国特种电源学术交流会. 2021

    Yuan Jianfeng, Chen Zhengkun, Cai Jiawei, et al. Navigation interference based on ultra-wide band electromagnetic pulse[C]//Proceedings of the 7th National Pulse Power Conference and the 8th National Special Power Supply Academic Exchange Conference. 2021
    [15] Sakharov K Y, Sukhov A V, Ugolev V L, et al. Study of UWB electromagnetic pulse impact on commercial unmanned aerial vehicle[C]//Proceedings of 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018: 40-43.
    [16] 鞠涛, 黄高明, 满欣. 任意分散布阵通信干扰机空间功率合成方法[J]. 火力与指挥控制, 2020, 45(8):57-61,67 doi: 10.3969/j.issn.1002-0640.2020.08.009

    Ju Tao, Huang Gaoming, Man Xin. A spatial power synthetic method for random distributed array communication jammers[J]. Fire Control & Command Control, 2020, 45(8): 57-61,67 doi: 10.3969/j.issn.1002-0640.2020.08.009
    [17] 袁雪林, 徐哲锋, 张洪德, 等. UWB冲激雷达全固态高重频脉冲源设计[J]. 微波学报, 2008, 24(5):35-39

    Yuan Xuelin, Xu Zhefeng, Zhang Hongde, et al. Design of the full-solid high-repeatation pulser in UWB impulse radar[J]. Journal of Microwaves, 2008, 24(5): 35-39
    [18] 相巳琪. 基于有限反馈的分布式干扰波束形成[D]. 西安: 西安电子科技大学, 2019

    Xiang Siqi. Distributed inference beamforming based on finite feedback[D]. Xi'an: Xidian University, 2019
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  386
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-01-04
  • 录用日期:  2023-01-05
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回