Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability
-
摘要: 强电磁脉冲易通过天线、孔缝、线缆等多种耦合途径进入电子系统内部,造成敏感电子设备出现短暂故障或永久损毁。安装电磁脉冲防护电路可有效提高电子设备抗强电磁脉冲能力。基于LC选频网络和瞬态电压抑制(TVS)二极管,设计了一种宽带高抑制性能电磁脉冲防护电路,防护电路工作带宽超过2 GHz、插入损耗低于0.6 dB。系统性研究了防护电路对频谱分布在工作带宽内多种电磁脉冲(方波脉冲、宽带高功率微波、窄带高功率微波)的防护能力。结果表明:防护电路对不同类型电磁脉冲电压抑制比大于40 dB、耐受功率超过387 kW、而响应时间仅0.7 ns。该防护电路具有工作频带宽、电磁抑制性能好、响应速度快、耐受功率高等特点,对电子信息系统电磁防护加固具有重要意义。Abstract: High-intensity electromagnetic pulse can easily couple into the electronic system through antenna, cavity and cable, causing transient failure or permanent damage of the sensitive electronic equipment. Installing electromagnetic pulse protection circuit can effectively improve the anti-destruction ability of electronic equipment against high-intensity electromagnetic pulse. Herein, based on LC frequency selective network and transient voltage suppressor (TVS) diodes, we develop a wideband electromagnetic pulse protection circuit with outstanding suppression capability. The operation bandwidth of the protection circuit exceeds 2 GHz, while the insertion loss is less than 0.6 dB. Moreover, the suppression capabilities of this protection circuit towards square-wave pulse, wide-band high-power microwave and narrow-band high-power microwave were systematically investigated. The results show that the protection circuit has a suppression ratio of more than 40 dB and power capacity up to 387 kW, while the response time is as low as 0.7 ns. Altogether, the protection circuit has advantages of wide operation bandwidth, excellent suppression performance, fast response time and high power capacity, which are of great importance for the electromagnetic protection reinforcement of electronic information system.
-
表 1 TVS二极管等效电路参数
Table 1. Equivalent circuit parameters of TVS diode
model Cj/pF Rj/kΩ Rs/Ω Lp/nH Cp/pF PESD5V0U1BBYL 2.9 18 6 1.8 0.12 PESD2V0Y1BSFYL 0.7 15 4 1.4 0.08 表 2 防护电路对不同类型电磁脉冲的抑制能力及注入脉冲峰值功率
Table 2. Voltage suppression ratio of protection circuit towards different electromagnetic pulses and the peak power of incident pulses
waveform R/dB incident peak power/kW square-wave pulse 45.4 387.2 WB-HPM 42.7 115.2 NB-HPM 40.1 45.0 -
[1] 秦风, 蔡金良, 曹学军, 等. 车辆强电磁脉冲环境适应性研究[J]. 强激光与粒子束, 2019, 31:103203 doi: 10.11884/HPLPB201931.190233Qin Feng, Cai Jinliang, Cao Xuejun, et al. Investigation on the adaptability of vehicle in high-intensity electromagnetic pulse environment[J]. High Power Laser and Particle Beams, 2019, 31: 103203 doi: 10.11884/HPLPB201931.190233 [2] 秦风, 高原, 马弘舸. 高置信度强电磁脉冲环境测试技术研究进展与展望[J]. 强激光与粒子束, 2021, 33:123001 doi: 10.11884/HPLPB202133.210482Qin Feng, Gao Yuan, Ma Hongge. Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123001 doi: 10.11884/HPLPB202133.210482 [3] 刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002 [4] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242 doi: 10.15918/j.tbit1001-0645.2018.332Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242 doi: 10.15918/j.tbit1001-0645.2018.332 [5] 黄丹. 基于PIN二极管的X波段大功率限幅器设计[D]. 成都: 电子科技大学, 2018Huang Dan. Design of a X-band microwave limiter based on PIN diode[D]. Chengdu: University of Electronic Science and Technology of China, 2018 [6] 毕景康. 强电磁脉冲组合防护模块设计与研究[D]. 西安: 西安电子科技大学, 2020Bi Jingkang. Design and research of combined protection module of strong electromagnetic pulse[D]. Xi’an: Xidian University, 2020 [7] 杜传报, 毛从光, 崔志同, 等. 无线通信系统电磁脉冲传导防护组件设计与有效性试验验证[J]. 强激光与粒子束, 2021, 33:093005 doi: 10.11884/HPLPB202133.210155Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Design and validation test of high-altitude electromagnetic pulse conductive protector module for wireless communication system[J]. High Power Laser and Particle Beams, 2021, 33: 093005 doi: 10.11884/HPLPB202133.210155 [8] Younis M T, Nasser N Y. Overvoltage transient protection network design[J]. Engineering and Technology Journal, 2009, 27(15): 2711-2718. [9] Kim K N, Lee S H, Kim J T. Implementation of dedicated power line filter for HEMP protection[J]. The Journal of the Institute of Internet, Broadcasting and Communication, 2016, 16(4): 47-52. doi: 10.7236/JIIBC.2016.16.4.47 [10] 张俊, 姜彦南, 张耀辉, 等. 纳秒脉冲下典型钳压型浪涌防护元件的响应特性[J]. 强激光与粒子束, 2016, 28:125003 doi: 10.11884/HPLPB201628.160167Zhang Jun, Jiang Yannan, Zhang Yaohui, et al. Nanosecond pulse response of typical voltage-clamping surge protective devices[J]. High Power Laser and Particle Beams, 2016, 28: 125003 doi: 10.11884/HPLPB201628.160167 [11] 张小威. 不同快脉冲下脉冲防护器件响应特性与防护技术研究[D]. 西安: 西安电子科技大学, 2019: 20-47Zhang Xiaowei. Research on response characteristics and protection technology of EMP protection devices under different fast pulses[D]. Xi’an: Xidian University, 2019: 20-47 [12] 邓世雄, 高长征, 陈书宾, 等. 小型化高功率微波限幅器研究[J]. 微波学报, 2020, 36(5):70-73 doi: 10.14183/j.cnki.1005-6122.202005014Deng Shixiong, Gao Changzheng, Chen Shubin, et al. Research on miniaturized high power microwave limiter[J]. Journal of Microwaves, 2020, 36(5): 70-73 doi: 10.14183/j.cnki.1005-6122.202005014 [13] 李亚南, 谭志良. 基于PIN二极管的快上升沿电磁脉冲防护模块设计与研究[J]. 兵工学报, 2018, 39(10):2066-2072 doi: 10.3969/j.issn.1000-1093.2018.10.021Li Yanan, Tan Zhiliang. Design and research of the fast rise time electromagnetic pulse protection module based on PIN diode[J]. Acta Armamentarii, 2018, 39(10): 2066-2072 doi: 10.3969/j.issn.1000-1093.2018.10.021 [14] Yang Lin, Yang Lin’an, Rong Taotao, et al. Codesign of Ka-band integrated GaAs PIN diodes limiter and low noise amplifier[J]. IEEE Access, 2019, 7: 88275-88281. doi: 10.1109/ACCESS.2019.2923210 [15] Yang S S, Kim T Y, Kong D K, et al. A novel analysis of a Ku-band planar p-i-n diode limiter[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(6): 1447-1460. doi: 10.1109/TMTT.2009.2019993 [16] 艾竞. 小型化X波段平衡式限幅器设计[D]. 成都: 电子科技大学, 2013Ai Jing. Design of a X-band miniaturized balanced microwave limiter[D]. Chengdu: University of Electronic Science and Technology of China, 2013 [17] 王冬冬, 邓峰, 郑生全, 等. PIN二极管限幅器的电磁脉冲损伤特性试验[J]. 中国舰船研究, 2015, 10(2):65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012Wang Dongdong, Deng Feng, Zheng Shengquan, et al. Experimental investigation on the EMP damage characteristics of PIN diode limiters[J]. Chinese Journal of Ship Research, 2015, 10(2): 65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012 [18] 牛萍, 王培, 赵佳欢, 等. 基于组合型电涌保护器能量配合的实验研究[J]. 南京信息工程大学学报:自然科学版, 2015, 7(5):463-468Niu Ping, Wang Pei, Zhao Jiahuan, et al. Energy coordination of combined surge protective device[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2015, 7(5): 463-468 [19] 孟兆祥, 毕军建, 王玉明, 等. 基于组合匹配的低残压宽带雷电防护方法研究[J]. 电波科学学报, 2021, 36(4):547-552Meng Zhaoxiang, Bi Junjian, Wang Yuming, et al. Research on the lightning protection method for the low residual voltage and broadband based on the combined matching[J]. Chinese Journal of Radio Science, 2021, 36(4): 547-552 [20] Lepkowski J, Wolfe B, Lepkowski W. EMI/ESD solutions for the CAN network[C]//Proceedings. 2005 IEEE Networking, Sensing and Control, 2005. 2005: 413-418. [21] 陈子鹏, 戴亚文, 李鹏, 等. 无线传感器电磁脉冲效应实验及防护电路设计[J]. 武汉理工大学学报, 2013, 35(5):146-151 doi: 10.3963/j.issn.1671-4431.2013.05.028Chen Zipeng, Dai Yawen, Li Peng, et al. Effect of ESD EMP test on wireless sensor and protection network design[J]. Journal of Wuhan University of Technology, 2013, 35(5): 146-151 doi: 10.3963/j.issn.1671-4431.2013.05.028 [22] Meiguni J S, Zhou Jianchi, Maghlakelidze G, et al. Transient analysis of ESD protection circuits for high-speed ICs[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1312-1321. doi: 10.1109/TEMC.2021.3071644 [23] Zhang Chengrui, Zeng Xun, Zhou Liang, et al. Protection effects using transient voltage suppressor diodes based circuits under high-power microwave pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(6): 2058-2064. doi: 10.1109/TEMC.2021.3095483 [24] Pozar D M. Microwave engineering[M]. 4th ed. New York: John Wiley & Sons, 2011: 174-191. [25] 郝凤柱. 某机载天线系统的电磁脉冲防护研究[D]. 合肥: 合肥工业大学, 2017: 28-39Hao Fengzhu. Study of protection against electromagnetic pulse for airborne antenna[D]. Hefei: Hefei University of Technology, 2017: 28-39 [26] Shurenkov V V, Pershenkov V S. Electromagnetic pulse effects and damage mechanism on the semiconductor electronics[J]. Facta Universitatis-Series: Electronics and Energetics, 2016, 29(4): 621-629. doi: 10.2298/FUEE1604621S [27] Cheng Yonghong, Ding Man, Wu Kai, et al. Damage effect of typical electronic device under EMP[C]//Proceedings of 2011 International Symposium on Electrical Insulating Materials. 2011: 491-494.