留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全光纤激光阵列主动相位控制技术研究进展

常洪祥 粟荣涛 龙金虎 常琦 马鹏飞 马阎星 周朴

常洪祥, 粟荣涛, 龙金虎, 等. 全光纤激光阵列主动相位控制技术研究进展[J]. 强激光与粒子束, 2023, 35: 041004. doi: 10.11884/HPLPB202335.220259
引用本文: 常洪祥, 粟荣涛, 龙金虎, 等. 全光纤激光阵列主动相位控制技术研究进展[J]. 强激光与粒子束, 2023, 35: 041004. doi: 10.11884/HPLPB202335.220259
Chang Hongxiang, Su Rongtao, Long Jinhu, et al. Research progress of active phase-locking technique of an all-fiber coherent laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041004. doi: 10.11884/HPLPB202335.220259
Citation: Chang Hongxiang, Su Rongtao, Long Jinhu, et al. Research progress of active phase-locking technique of an all-fiber coherent laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041004. doi: 10.11884/HPLPB202335.220259

全光纤激光阵列主动相位控制技术研究进展

doi: 10.11884/HPLPB202335.220259
基金项目: 湖南省创新研究群体项目(2019JJ10005);长沙市杰出创新青年培养计划(KQ2009029);湖南省研究生创新项目(CX20210017)
详细信息
    作者简介:

    常洪祥,changerhx@foxmail.com

    通讯作者:

    周 朴,zhoupu203@163.com

  • 中图分类号: TN248.1

Research progress of active phase-locking technique of an all-fiber coherent laser array

  • 摘要: 全光纤激光阵列主动相位控制利用全光纤网络实现阵列激光的活塞相位内部探测与控制,具有结构紧凑、无需外部反馈光学器件和易于扩展等优点,是大阵元规模光纤激光相干合成重要发展方向之一。采用全光纤相位探测结构,介绍了全光纤激光阵列主动相位控制技术的系统原理和利用光纤耦合器实现相位锁定的过程,总结了全光纤激光阵列主动相位控制关键技术,通过优化算法实现全光纤激光阵列主动相位控制验证实验。探讨了在全光纤结构主动相位控制中π相位模糊问题及解决方法,给出了利用双波长探测实现消除π相位模糊问题的仿真结果。最后梳理了全光纤激光阵列主动相位控制研究现状,并从路数扩展、功率提升和应用等方面进行了展望。
  • 图  1  全光纤激光阵列主动相位控制原理图

    Figure  1.  Schematic diagram of the active phase control for an all-fiber laser array

    图  2  基于数字增强外差干涉的全光纤激光相干阵列主动内部相位控制的原理图[45]

    Figure  2.  Schematic diagram of an internal sensing optical phased array based on DEHI [45]

    图  3  PRN编码的自相关特性[43]

    Figure  3.  Autocorrelation of PRN coding[43]

    图  4  输出重映射光波导输出头示意图[49]

    Figure  4.  Schematic diagram of pixel-remapping waveguide optical head[49]

    图  5  双波长探测内部相位控制原理图[50]

    Figure  5.  Schematic diagram of internal phase control for double wavelength detection[50]

    图  6  探测激光光谱范围与光程差之间的关系[50]

    Figure  6.  Relationship of beacon laser spectral range and optical path difference[50]

    图  7  利用3 dB光纤耦合器实现分孔径内部相位控制原理图和实验结果[44]

    Figure  7.  Internal phase control of tiled-aperture by using 3 dB coupler and results[44]

    图  8  级联分布式内部相位控制原理图[57]

    Figure  8.  Schematic diagram of cascade distributed internal phase control[57]

    图  9  级联分布式内部相位控制实验结果[57]

    Figure  9.  Experiment results of cascade distributed internal phase control[57]

    图  10  超大数目激光相干合成系统原理图[52]

    Figure  10.  Schematic diagram of a CBC system for an ultra-large number laser array[52]

    图  11  Breakthrough Starshot概念效果图[65]

    Figure  11.  Artist’s rendering of Breakthrough Starshot project[65]

  • [1] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学:技术科学, 2020, 50(2):123-135 doi: 10.1360/N092018-00409

    Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica Technologica, 2020, 50(2): 123-135 doi: 10.1360/N092018-00409
    [2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0904123.
    [3] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [4] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541. doi: 10.1063/1.1654249
    [5] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [6] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/AOP.385184
    [7] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 2019, 27(13): 19019-19041. doi: 10.1364/OE.27.019019
    [8] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32:121001

    Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001
    [9] 周朴. 高平均功率光纤激光技术基础: 模式[J]. 强激光与粒子束, 2018, 30:060201

    Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30: 060201
    [10] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
    [11] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [12] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [13] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
    [14] Müller M, Aleshire C, Klenke A, et al. 10.4  kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [15] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 21-26.
    [16] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
    [17] Shay T M, Benham V, Baker J T, et al. Self-synchronous and self-referenced coherent beam combination for large optical arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480-486. doi: 10.1109/JSTQE.2007.897173
    [18] Chosrowjan H, Furuse H, Fujita M, et al. Interferometric phase shift compensation technique for high-power, tiled-aperture coherent beam combination[J]. Optics Letters, 2013, 38(8): 1277-1279. doi: 10.1364/OL.38.001277
    [19] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
    [20] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 2019, 7: e59. doi: 10.1017/hpl.2019.46
    [21] Liu Renqi, Peng Chun, Liang Xiaoyan, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 2020, 18: 041402. doi: 10.3788/COL202018.041402
    [22] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 2019, 27(17): 24223-24230. doi: 10.1364/OE.27.024223
    [23] Jiang Min, Wu Hanshuo, An Yi, et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 2022, 3: 16. doi: 10.1186/s43074-022-00055-3
    [24] 肖瑞, 侯静, 姜宗福, 等. 三路光纤放大器相干合成技术的实验研究[J]. 物理学报, 2006, 55(12):6464-6469 doi: 10.7498/aps.55.6464

    Xiao Rui, Hou Jing, Jiang Zongfu, et al. Experimental research of coherent combining of three fiber amplifiers[J]. Acta Physica Sinica, 2006, 55(12): 6464-6469 doi: 10.7498/aps.55.6464
    [25] Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
    [26] Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
    [27] 李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002

    Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-loop coherent beam combining of a 57-aperture fiber laser array over 2 km in atmosphere based on an adaptive optical system[J]. Chinese Journal of Lasers, 2022, 49: 0616002
    [28] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [29] Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
    [30] Shpakovych M, Maulion G, Kermene V, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 2021, 29(8): 12307-12318. doi: 10.1364/OE.419232
    [31] Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of large number of PM fibres in 2-D fibre array[J]. Electronics Letters, 2006, 42(18): 1024-1025. doi: 10.1049/el:20061938
    [32] Du Qiang, Wang Dan, Zhou Tong, et al. 81-beam coherent combination using a programmable array generator[J]. Optics Express, 2021, 29(4): 5407-5418. doi: 10.1364/OE.416499
    [33] 常琦, 侯天悦, 邓宇, 等. 基于二维光场计算的400束规模激光相干合成[J]. 红外与激光工程, 2022, 51:20220276

    Chang Qi, Hou Tianyue, Deng Yu, et al. Coherent beam combining of 400 beams via 2D light-field processing[J]. Infrared and Laser Engineering, 2022, 51: 20220276
    [34] 粟荣涛, 周朴, 王小林, 等. 32路光纤激光相干阵列的相位锁定[J]. 强激光与粒子束, 2014, 26:110101 doi: 10.3788/HPLPB20142611.110101

    Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26: 110101 doi: 10.3788/HPLPB20142611.110101
    [35] 黄智蒙, 唐选, 李晓峰, 等. 光纤激光阵列占空比对相干合成效果影响分析[J]. 电子科技大学学报, 2015, 44(6):946-950

    Huang Zhimeng, Tang Xuan, Li Xiaofeng, et al. Analysis of influence of filling ratio on coherent beam combination of fiber laser arrays[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 946-950
    [36] Kolosov V V, Levitskii M E, Petukhov T D, et al. Formation of the feedback loop for phase control of a fiber laser array[J]. Atmospheric and Oceanic Optics, 2019, 32(6): 716-723. doi: 10.1134/S1024856019060095
    [37] Vorontsov M A, Lachinova S L, Beresnev L A, et al. Obscuration-free pupil-plane phase locking of a coherent array of fiber collimators[J]. Journal of the Optical Society of America A, 2010, 27(11): A106-A121. doi: 10.1364/JOSAA.27.00A106
    [38] Bowman D J, King M J, Sutton A J, et al. Internally sensed optical phased array[J]. Optics Letters, 2013, 38(7): 1137-1139. doi: 10.1364/OL.38.001137
    [39] Bandutunga C P, Sibley P G, Ireland M J, et al. Photonic solution to phase sensing and control for light-based interstellar propulsion[J]. Journal of the Optical Society of America B, 2021, 38(5): 1477-1486. doi: 10.1364/JOSAB.414593
    [40] Long Jinhu, Chang Hongxiang, Zhang Yuqiu, et al. Compact internal sensing phase locking system for coherent combining of fiber laser array[J]. Optics & Laser Technology, 2022, 148: 107775.
    [41] Chang Hongxiang, Su Rongtao, Long Jinhu, et al. Distributed active phase-locking of an all-fiber structured laser array by a stochastic parallel gradient descent (SPGD) algorithm[J]. Optics Express, 2022, 30(2): 1089-1098. doi: 10.1364/OE.447869
    [42] Yang Yan, Geng Chao, Li Feng, et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 2017, 25(22): 27519-27532. doi: 10.1364/OE.25.027519
    [43] Shaddock D A. Digitally enhanced heterodyne interferometry[J]. Optics Letters, 2007, 32(22): 3355-3357. doi: 10.1364/OL.32.003355
    [44] 李枫, 耿超, 李新阳, 等. 基于光纤耦合器的全光纤链路锁相控制[J]. 光电工程, 2017, 44(6):602-609

    Li Feng, Geng Chao, Li Xinyang, et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 2017, 44(6): 602-609
    [45] Roberts L E, Ward R L, Francis S P, et al. High power compatible internally sensed optical phased array[J]. Optics Express, 2016, 24(12): 13467-13479. doi: 10.1364/OE.24.013467
    [46] Gozzard D R, Roberts L E, Spollard J T, et al. Fast beam steering with an optical phased array[J]. Optics Letters, 2020, 45(13): 3793-3796. doi: 10.1364/OL.393007
    [47] Gozzard D R, Spollard J T, Sibley P G, et al. Optical vortex beams with controllable orbital angular momentum using an optical phased array[J]. OSA Continuum, 2020, 3(12): 3399-3406. doi: 10.1364/OSAC.412607
    [48] Sibley P G, Ward R L, Roberts L E, et al. Pixel-remapping waveguide addition to an internally sensed optical phased array[C]//2016 Advanced Maui Optical and Space Surveillance Technologies Conference. 2016: 117.
    [49] Sibley P G. Scaling optical phased arrays[D]. Canberra: The Australian National University, 2021.
    [50] Chang Hongxiang, Su Rongtao, Qi Chang, et al. Internal phase control of coherent fiber laser array without ambiguous phase based on double wavelength detection[J]. Applied Optics, 2022, 61(12): 3429-3434. doi: 10.1364/AO.455156
    [51] Roberts L E, Ward R L, Sutton A J, et al. Coherent beam combining using a 2D internally sensed optical phased array[J]. Applied Optics, 2014, 53(22): 4881-4885. doi: 10.1364/AO.53.004881
    [52] 粟荣涛, 常洪祥, 陈思雨, 等. 全光纤网络大阵元数目相干阵列及其相位控制方法: 202210230427.5[P]. 2022-06-14

    Su Rongtao, Chang Hongxiang, Chen Siyu, et al. All-fiber network for a large number coherent array and its phase control methods: 202210230427.5[P]. 2022-06-14
    [53] 粟荣涛, 常洪祥, 龙金虎, 等. 全光纤激光相控阵系统的精确相位控制方法: 202111663407.9[P]. 2022-04-12

    Su Rongtao, Chang Hongxiang, Long Jinhu, et al. Precise phase control methods for an all-fiber laser phased array system: 202111663407.9[P]. 2022-04-12
    [54] 粟荣涛, 常洪祥, 龙金虎, 等. 全光纤激光相控阵系统及其相位控制方法: 202111159505.9[P]. 2022-01-07

    Su Rongtao, Chang Hongxiang, Long Jinhu, et al. All-fiber laser phased array system and its phase control methods: 202111159505.9[P]. 2022-01-07
    [55] 粟荣涛, 常洪祥, 龙金虎, 等. 分布式全光纤激光相控阵系统及其相位控制方法: 202111163656.1[P]. 2022-01-04

    Su Rongtao, Chang Hongxiang, Long Jinhu, et al. Distributed all-fiber laser phased array and its phase control methods: 202111163656.1[P]. 2022-01-04
    [56] Roberts L E, Ward R L, Smith C, et al. Coherent beam combining using an internally sensed optical phased array of frequency-offset phase locked lasers[J]. Photonics, 2020, 7: 118. doi: 10.3390/photonics7040118
    [57] Chang Hongxiang, Su Rongtao, Zhang Yuqiu, et al. Cascaded internal phase control of all-fiber coherent fiber laser array[J]. Frontiers in Physics, 2022, 10: 913195. doi: 10.3389/fphy.2022.913195
    [58] Sibley P G, Ward R L, Roberts L E, et al. Crosstalk reduction for multi-channel optical phase metrology[J]. Optics Express, 2020, 28(7): 10400-10424. doi: 10.1364/OE.388381
    [59] Jeong H, Lee J, Lee K H, et al. 740-watt level optical tap coupler using side-polished large-mode-area double clad fibers for a high power fiber laser[J]. Optics Express, 2021, 29(13): 19525-19530. doi: 10.1364/OE.430284
    [60] 来文昌, 马鹏飞, 刘伟, 等. 全光纤单频光纤放大器实现550 W近衍射极限输出[J]. 中国激光, 2020, 47:0415001 doi: 10.3788/CJL202047.0415001

    Lai Wenchang, Ma Pengfei, Liu Wei, et al. 550-W single-frequency all-fiber amplifier with near-diffraction-limited beam quality[J]. Chinese Journal of Lasers, 2020, 47: 0415001 doi: 10.3788/CJL202047.0415001
    [61] Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909. doi: 10.1364/OL.383093
    [62] Li Shupeng, Wang Xiangchuan, Qing Ting, et al. Optical fiber transfer delay measurement based on phase-derived ranging[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1351-1354. doi: 10.1109/LPT.2019.2926508
    [63] Worden S P, Green W A, Schalkwyk J, et al. Progress on the Starshot laser propulsion system[J]. Applied Optics, 2021, 60(31): H20-H23. doi: 10.1364/AO.435858
    [64] Duplay E, Bao Zhuofan, Rodriguez Rosero S, et al. Design of a rapid transit to Mars mission using laser-thermal propulsion[J]. Acta Astronautica, 2022, 192: 143-156. doi: 10.1016/j.actaastro.2021.11.032
    [65] Atwater H A, Davoyan A R, Ilic O, et al. Materials challenges for the Starshot lightsail[J]. Nature Materials, 2018, 17(10): 861-867. doi: 10.1038/s41563-018-0075-8
  • 加载中
图(11)
计量
  • 文章访问数:  1489
  • HTML全文浏览量:  396
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2022-10-31
  • 录用日期:  2022-11-09
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回