[1] |
周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学:技术科学, 2020, 50(2):123-135 doi: 10.1360/N092018-00409Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica Technologica, 2020, 50(2): 123-135 doi: 10.1360/N092018-00409
|
[2] |
Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0904123.
|
[3] |
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
|
[4] |
Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541. doi: 10.1063/1.1654249
|
[5] |
Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
|
[6] |
Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/AOP.385184
|
[7] |
Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 2019, 27(13): 19019-19041. doi: 10.1364/OE.27.019019
|
[8] |
来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32:121001Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001
|
[9] |
周朴. 高平均功率光纤激光技术基础: 模式[J]. 强激光与粒子束, 2018, 30:060201Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30: 060201
|
[10] |
Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
|
[11] |
Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
|
[12] |
周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
|
[13] |
Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
|
[14] |
Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
|
[15] |
Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 21-26.
|
[16] |
Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
|
[17] |
Shay T M, Benham V, Baker J T, et al. Self-synchronous and self-referenced coherent beam combination for large optical arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480-486. doi: 10.1109/JSTQE.2007.897173
|
[18] |
Chosrowjan H, Furuse H, Fujita M, et al. Interferometric phase shift compensation technique for high-power, tiled-aperture coherent beam combination[J]. Optics Letters, 2013, 38(8): 1277-1279. doi: 10.1364/OL.38.001277
|
[19] |
Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
|
[20] |
Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 2019, 7: e59. doi: 10.1017/hpl.2019.46
|
[21] |
Liu Renqi, Peng Chun, Liang Xiaoyan, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 2020, 18: 041402. doi: 10.3788/COL202018.041402
|
[22] |
Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 2019, 27(17): 24223-24230. doi: 10.1364/OE.27.024223
|
[23] |
Jiang Min, Wu Hanshuo, An Yi, et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 2022, 3: 16. doi: 10.1186/s43074-022-00055-3
|
[24] |
肖瑞, 侯静, 姜宗福, 等. 三路光纤放大器相干合成技术的实验研究[J]. 物理学报, 2006, 55(12):6464-6469 doi: 10.7498/aps.55.6464Xiao Rui, Hou Jing, Jiang Zongfu, et al. Experimental research of coherent combining of three fiber amplifiers[J]. Acta Physica Sinica, 2006, 55(12): 6464-6469 doi: 10.7498/aps.55.6464
|
[25] |
Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
|
[26] |
Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
|
[27] |
李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-loop coherent beam combining of a 57-aperture fiber laser array over 2 km in atmosphere based on an adaptive optical system[J]. Chinese Journal of Lasers, 2022, 49: 0616002
|
[28] |
Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
|
[29] |
Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
|
[30] |
Shpakovych M, Maulion G, Kermene V, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 2021, 29(8): 12307-12318. doi: 10.1364/OE.419232
|
[31] |
Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of large number of PM fibres in 2-D fibre array[J]. Electronics Letters, 2006, 42(18): 1024-1025. doi: 10.1049/el:20061938
|
[32] |
Du Qiang, Wang Dan, Zhou Tong, et al. 81-beam coherent combination using a programmable array generator[J]. Optics Express, 2021, 29(4): 5407-5418. doi: 10.1364/OE.416499
|
[33] |
常琦, 侯天悦, 邓宇, 等. 基于二维光场计算的400束规模激光相干合成[J]. 红外与激光工程, 2022, 51:20220276Chang Qi, Hou Tianyue, Deng Yu, et al. Coherent beam combining of 400 beams via 2D light-field processing[J]. Infrared and Laser Engineering, 2022, 51: 20220276
|
[34] |
粟荣涛, 周朴, 王小林, 等. 32路光纤激光相干阵列的相位锁定[J]. 强激光与粒子束, 2014, 26:110101 doi: 10.3788/HPLPB20142611.110101Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26: 110101 doi: 10.3788/HPLPB20142611.110101
|
[35] |
黄智蒙, 唐选, 李晓峰, 等. 光纤激光阵列占空比对相干合成效果影响分析[J]. 电子科技大学学报, 2015, 44(6):946-950Huang Zhimeng, Tang Xuan, Li Xiaofeng, et al. Analysis of influence of filling ratio on coherent beam combination of fiber laser arrays[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 946-950
|
[36] |
Kolosov V V, Levitskii M E, Petukhov T D, et al. Formation of the feedback loop for phase control of a fiber laser array[J]. Atmospheric and Oceanic Optics, 2019, 32(6): 716-723. doi: 10.1134/S1024856019060095
|
[37] |
Vorontsov M A, Lachinova S L, Beresnev L A, et al. Obscuration-free pupil-plane phase locking of a coherent array of fiber collimators[J]. Journal of the Optical Society of America A, 2010, 27(11): A106-A121. doi: 10.1364/JOSAA.27.00A106
|
[38] |
Bowman D J, King M J, Sutton A J, et al. Internally sensed optical phased array[J]. Optics Letters, 2013, 38(7): 1137-1139. doi: 10.1364/OL.38.001137
|
[39] |
Bandutunga C P, Sibley P G, Ireland M J, et al. Photonic solution to phase sensing and control for light-based interstellar propulsion[J]. Journal of the Optical Society of America B, 2021, 38(5): 1477-1486. doi: 10.1364/JOSAB.414593
|
[40] |
Long Jinhu, Chang Hongxiang, Zhang Yuqiu, et al. Compact internal sensing phase locking system for coherent combining of fiber laser array[J]. Optics & Laser Technology, 2022, 148: 107775.
|
[41] |
Chang Hongxiang, Su Rongtao, Long Jinhu, et al. Distributed active phase-locking of an all-fiber structured laser array by a stochastic parallel gradient descent (SPGD) algorithm[J]. Optics Express, 2022, 30(2): 1089-1098. doi: 10.1364/OE.447869
|
[42] |
Yang Yan, Geng Chao, Li Feng, et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 2017, 25(22): 27519-27532. doi: 10.1364/OE.25.027519
|
[43] |
Shaddock D A. Digitally enhanced heterodyne interferometry[J]. Optics Letters, 2007, 32(22): 3355-3357. doi: 10.1364/OL.32.003355
|
[44] |
李枫, 耿超, 李新阳, 等. 基于光纤耦合器的全光纤链路锁相控制[J]. 光电工程, 2017, 44(6):602-609Li Feng, Geng Chao, Li Xinyang, et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 2017, 44(6): 602-609
|
[45] |
Roberts L E, Ward R L, Francis S P, et al. High power compatible internally sensed optical phased array[J]. Optics Express, 2016, 24(12): 13467-13479. doi: 10.1364/OE.24.013467
|
[46] |
Gozzard D R, Roberts L E, Spollard J T, et al. Fast beam steering with an optical phased array[J]. Optics Letters, 2020, 45(13): 3793-3796. doi: 10.1364/OL.393007
|
[47] |
Gozzard D R, Spollard J T, Sibley P G, et al. Optical vortex beams with controllable orbital angular momentum using an optical phased array[J]. OSA Continuum, 2020, 3(12): 3399-3406. doi: 10.1364/OSAC.412607
|
[48] |
Sibley P G, Ward R L, Roberts L E, et al. Pixel-remapping waveguide addition to an internally sensed optical phased array[C]//2016 Advanced Maui Optical and Space Surveillance Technologies Conference. 2016: 117.
|
[49] |
Sibley P G. Scaling optical phased arrays[D]. Canberra: The Australian National University, 2021.
|
[50] |
Chang Hongxiang, Su Rongtao, Qi Chang, et al. Internal phase control of coherent fiber laser array without ambiguous phase based on double wavelength detection[J]. Applied Optics, 2022, 61(12): 3429-3434. doi: 10.1364/AO.455156
|
[51] |
Roberts L E, Ward R L, Sutton A J, et al. Coherent beam combining using a 2D internally sensed optical phased array[J]. Applied Optics, 2014, 53(22): 4881-4885. doi: 10.1364/AO.53.004881
|
[52] |
粟荣涛, 常洪祥, 陈思雨, 等. 全光纤网络大阵元数目相干阵列及其相位控制方法: 202210230427.5[P]. 2022-06-14Su Rongtao, Chang Hongxiang, Chen Siyu, et al. All-fiber network for a large number coherent array and its phase control methods: 202210230427.5[P]. 2022-06-14
|
[53] |
粟荣涛, 常洪祥, 龙金虎, 等. 全光纤激光相控阵系统的精确相位控制方法: 202111663407.9[P]. 2022-04-12Su Rongtao, Chang Hongxiang, Long Jinhu, et al. Precise phase control methods for an all-fiber laser phased array system: 202111663407.9[P]. 2022-04-12
|
[54] |
粟荣涛, 常洪祥, 龙金虎, 等. 全光纤激光相控阵系统及其相位控制方法: 202111159505.9[P]. 2022-01-07Su Rongtao, Chang Hongxiang, Long Jinhu, et al. All-fiber laser phased array system and its phase control methods: 202111159505.9[P]. 2022-01-07
|
[55] |
粟荣涛, 常洪祥, 龙金虎, 等. 分布式全光纤激光相控阵系统及其相位控制方法: 202111163656.1[P]. 2022-01-04Su Rongtao, Chang Hongxiang, Long Jinhu, et al. Distributed all-fiber laser phased array and its phase control methods: 202111163656.1[P]. 2022-01-04
|
[56] |
Roberts L E, Ward R L, Smith C, et al. Coherent beam combining using an internally sensed optical phased array of frequency-offset phase locked lasers[J]. Photonics, 2020, 7: 118. doi: 10.3390/photonics7040118
|
[57] |
Chang Hongxiang, Su Rongtao, Zhang Yuqiu, et al. Cascaded internal phase control of all-fiber coherent fiber laser array[J]. Frontiers in Physics, 2022, 10: 913195. doi: 10.3389/fphy.2022.913195
|
[58] |
Sibley P G, Ward R L, Roberts L E, et al. Crosstalk reduction for multi-channel optical phase metrology[J]. Optics Express, 2020, 28(7): 10400-10424. doi: 10.1364/OE.388381
|
[59] |
Jeong H, Lee J, Lee K H, et al. 740-watt level optical tap coupler using side-polished large-mode-area double clad fibers for a high power fiber laser[J]. Optics Express, 2021, 29(13): 19525-19530. doi: 10.1364/OE.430284
|
[60] |
来文昌, 马鹏飞, 刘伟, 等. 全光纤单频光纤放大器实现550 W近衍射极限输出[J]. 中国激光, 2020, 47:0415001 doi: 10.3788/CJL202047.0415001Lai Wenchang, Ma Pengfei, Liu Wei, et al. 550-W single-frequency all-fiber amplifier with near-diffraction-limited beam quality[J]. Chinese Journal of Lasers, 2020, 47: 0415001 doi: 10.3788/CJL202047.0415001
|
[61] |
Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909. doi: 10.1364/OL.383093
|
[62] |
Li Shupeng, Wang Xiangchuan, Qing Ting, et al. Optical fiber transfer delay measurement based on phase-derived ranging[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1351-1354. doi: 10.1109/LPT.2019.2926508
|
[63] |
Worden S P, Green W A, Schalkwyk J, et al. Progress on the Starshot laser propulsion system[J]. Applied Optics, 2021, 60(31): H20-H23. doi: 10.1364/AO.435858
|
[64] |
Duplay E, Bao Zhuofan, Rodriguez Rosero S, et al. Design of a rapid transit to Mars mission using laser-thermal propulsion[J]. Acta Astronautica, 2022, 192: 143-156. doi: 10.1016/j.actaastro.2021.11.032
|
[65] |
Atwater H A, Davoyan A R, Ilic O, et al. Materials challenges for the Starshot lightsail[J]. Nature Materials, 2018, 17(10): 861-867. doi: 10.1038/s41563-018-0075-8
|