留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强聚焦条件下连续位相板散斑特性的矢量分析

杨春林

杨春林. 强聚焦条件下连续位相板散斑特性的矢量分析[J]. 强激光与粒子束, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260
引用本文: 杨春林. 强聚焦条件下连续位相板散斑特性的矢量分析[J]. 强激光与粒子束, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260
Yang Chunlin. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260
Citation: Yang Chunlin. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260

强聚焦条件下连续位相板散斑特性的矢量分析

doi: 10.11884/HPLPB202335.220260
基金项目: 四川省重大科技专项项目(2019ZDZX0038)
详细信息
    作者简介:

    杨春林,yangchunlin@hotmail.com

  • 中图分类号: O439

Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing

  • 摘要: 连续位相板(CPP)经过透镜聚焦后,在焦平面上形成一个散斑场,散斑场的统计性质决定了CPP的束匀滑特性。当使用大数值孔径透镜聚焦后,傍轴近似不再成立,因此分析CPP焦斑特性时标量衍射理论不再适用。采用Richard-Wolf矢量衍射理论对强聚焦条件下的CPP焦斑进行了计算,在此基础上分析了矢量焦斑场的统计特性,讨论了焦斑的轮廓。结果表明,由于非近轴的原因,矢量分析得到的焦斑尺寸略大,且通过矢量分析后能够得到z轴方向的光场分量。散斑场的振幅分布满足瑞利分布特性,强度分布满足负指数分布特性,且矢量合成方向的光强分布会略微偏离负指数分布特性。
  • 图  1  CPP的应用光路及其表面相位分布

    Figure  1.  Light path of CPP and phase distribution of CPP

    图  2  焦平面上矢量散斑光场的相对振幅

    Figure  2.  Electric field relative amplitude of vector speckles on the focus plate

    图  3  散斑振幅的统计分布,接近瑞利分布

    Figure  3.  Statistical distribution of speckles amplitude, it’s Rayleigh distribution

    图  4  CPP矢量散斑场的光强分布特性

    Figure  4.  Statistical distribution of vector speckles intensity of CPP

    图  5  矢量方法和标量方法分别计算的Ex分布

    Figure  5.  Ex distribution calculated by vector method and scalar method

  • [1] Tikhonchuk V T. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion[J]. Nuclear Fusion, 2019, 59: 032001. doi: 10.1088/1741-4326/aab21a
    [2] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060. doi: 10.1103/PhysRevLett.53.1057
    [3] Tikhonchuk V T, Mounaix P H, Pesme D. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma[J]. Physics of Plasmas, 1997, 4(7): 2658-2669. doi: 10.1063/1.872351
    [4] 杨春林. 等离子体中散斑光场的传输特性[J]. 物理学报, 2018, 67:085201 doi: 10.7498/aps.67.20171795

    Yang Chunlin. Propagation characteristics of speckle field in plasma[J]. Acta Physica Sinica, 2018, 67: 085201 doi: 10.7498/aps.67.20171795
    [5] Hüller S, Porzio A, Robiche J. Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing[J]. New Journal of Physics, 2013, 15: 025003. doi: 10.1088/1367-2630/15/2/025003
    [6] 杨春林. 位相叠加效应对连续位相板束匀滑特性的影响[J]. 红外与激光工程, 2020, 49:20190515 doi: 10.3788/IRLA20190515

    Yang Chunlin. Influence of phase additive effect on beam smoothing character of continuous phase plate[J]. Infrared and Laser Engineering, 2020, 49: 20190515 doi: 10.3788/IRLA20190515
    [7] Goodman J W. 光学中的散斑现象: 理论与应用[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009: 71

    Goodman J W. Speckle phenomena in optics: theory and applications[M]. Cao Qizhi, Chen Jiabi, trans. Beijing: Science Press, 2009: 71
    [8] Wolf E. Electromagnetic diffraction in optical systems- I. An integral representation of the image field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 349-357.
    [9] Foley J T, Wolf E. Wave-front spacing in the focal region of high-numerical-aperture systems[J]. Optics Letters, 2005, 30(11): 1312-1314. doi: 10.1364/OL.30.001312
    [10] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
    [11] Khonina S N, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening[J]. Journal of the Optical Society of America A, 2018, 35(6): 985-991. doi: 10.1364/JOSAA.35.000985
    [12] Omatsu T, Litchinitser N M, Brasselet E, et al. Focus issue introduction: synergy of structured light and structured materials[J]. Optics Express, 2017, 25(14): 16681-16685. doi: 10.1364/OE.25.016681
    [13] Tao S H, Yuan X C, Lin J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100: 043105. doi: 10.1063/1.2260823
    [14] Lin J, Rodríguez-Herrera O G, Kenny F, et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform[J]. Optics Express, 2012, 20(2): 1060-1069. doi: 10.1364/OE.20.001060
    [15] Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. doi: 10.1364/OL.36.000888
  • 加载中
图(5)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  259
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2023-02-15
  • 录用日期:  2023-02-15
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回