留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yb:CNGG有源反射镜的多程放大特性研究

吴哲 管相合 季来林 华怡林 高妍琦 隋展 陈华才

吴哲, 管相合, 季来林, 等. Yb:CNGG有源反射镜的多程放大特性研究[J]. 强激光与粒子束, 2023, 35: 031003. doi: 10.11884/HPLPB202335.220261
引用本文: 吴哲, 管相合, 季来林, 等. Yb:CNGG有源反射镜的多程放大特性研究[J]. 强激光与粒子束, 2023, 35: 031003. doi: 10.11884/HPLPB202335.220261
Wu Zhe, Guan Xianghe, Ji Lailin, et al. Research on multi-pass amplification characteristics of Yb:CNGG active mirror[J]. High Power Laser and Particle Beams, 2023, 35: 031003. doi: 10.11884/HPLPB202335.220261
Citation: Wu Zhe, Guan Xianghe, Ji Lailin, et al. Research on multi-pass amplification characteristics of Yb:CNGG active mirror[J]. High Power Laser and Particle Beams, 2023, 35: 031003. doi: 10.11884/HPLPB202335.220261

Yb:CNGG有源反射镜的多程放大特性研究

doi: 10.11884/HPLPB202335.220261
基金项目: 空间碎片与小行星专项(KJSP2020010304)
详细信息
    作者简介:

    吴 哲,958884600@qq.com

    通讯作者:

    管相合,guanxianghe@163.com

    陈华才,huacaichen@cjlu.edu.cn

  • 中图分类号: TN244

Research on multi-pass amplification characteristics of Yb:CNGG active mirror

  • 摘要: 高效、高平均功率固体纳秒脉冲激光器在光电对抗、激光雷达、材料改性、激光加工等诸多领域发挥着越来越重要的作用,然而目前大多数纳秒级高平均功率激光器采用Yb:YAG或掺Nd材料作为增益介质,材料的高饱和通量或低储能密度会导致激光器放大链路复杂,体积庞大。研究比较了一种更适合作为高平均功率、高脉冲能量激光器增益介质的无序石榴石晶体Yb:CNGG,研究了有源反射镜结构中Yb:CNGG的多程增益特性,分析了放大过程并建立了多程放大模型,在一定的泵浦条件下优化了晶体参数以实现更好的储能。开展了双程放大实验,在15 kW/cm2的泵浦功率密度下得到了1.53倍的增益。对比Yb:CNGG晶体与Yb:YAG晶体的多程放大能力,在相同的晶体参数和泵浦条件下,在入射能量1 mJ时Yb:CNGG可实现2.11 J的脉冲能量输出,优于Yb:YAG晶体1.41 J的能量输出。
  • 图  1  二维矩形板条结构示意图

    Figure  1.  Schematic of two-dimensional rectangular slab structure

    图  2  晶体在不同厚度和掺杂原子分数下的单程增益倍数

    Figure  2.  Single gain multiples of crystals at different thicknesses and doping concentrations

    图  3  双程激光放大系统示意图

    Figure  3.  Schematic diagram of the two-pass laser amplification system

    图  4  增益倍数随泵浦功率密度变化的理论曲线及实验结果

    Figure  4.  Theoretical curves and experimental results of gain multiple changing with pump power density

    图  5  多程激光放大系统示意图

    Figure  5.  Schematic diagram of the multi-pass laser amplification system

    图  6  Yb:CNGG或Yb :YAG作为增益介质时,多程放大器输出能量随入射能量的变化趋势

    Figure  6.  Relationship between output energy and input energy of multi-pass amplifier when Yb:CNGG or Yb: YAG is used as a gain medium

    表  1  Yb:CNGG, Yb:YAG和 Nd:glass (LHG-5)的常用参数对比

    Table  1.   Comparison of common parameters of Yb:CNGG, Yb:YAG and Nd: Glass (LHG-5)

    crystalabsorption
    wavelength/nm
    absorption cross
    section/(10−20 cm2)
    emission
    wavelength/nm
    emission cross
    section/(10−20 cm2)
    fluorescence
    lifetime/ms
    thermal conductivity/
    (W·m−1·K−1)
    Yb:CNGG9411.610282.40.794.7
    Yb:YAG9410.7610302.030.9510
    Nd:Glass (LHG-5)8403.010544.10.291.19
    下载: 导出CSV
  • [1] Liu Jie, Duan Yanmin, Li Zhihong, et al. Recent progress in nonlinear frequency conversion of optical vortex lasers[J]. Frontiers in Physics, 2022, 10: 865029. doi: 10.3389/fphy.2022.865029
    [2] Zeng Huangjun, Lin Zhanglang, Xue Wenze, et al. SESAM mode-locked Yb: Ca3Gd2(BO3)4 femtosecond laser[J]. Applied Sciences, 2021, 11: 9464. doi: 10.3390/app11209464
    [3] Bogdanovich M, Grigor'ev A, Dudikov V, et al. Pulsed high-repetition rate diode-pumped Nd: YAG laser source with advanced ring Q-switch modulator[J]. Results in Optics, 2021, 3: 100077. doi: 10.1016/j.rio.2021.100077
    [4] Stjernström M, Laurell F, Brismar H. Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy[J]. Journal of Laser Applications, 2008, 20(3): 160-164. doi: 10.2351/1.2955554
    [5] Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387. doi: 10.13182/FST07-A1517
    [6] Albach D, Arzakantsyan M, Bourdet G, et al. Current status of the LUCIA laser system[J]. Journal of Physics: Conference Series, 2010, 244: 032015. doi: 10.1088/1742-6596/244/3/032015
    [7] Banerjee S, Ertel K, Mason P, et al. DiPOLE: A multi-slab cryogenic diode pumped Yb: YAG amplifier[C]//Proceedings of SPIE Volume 8780, High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers. , 2017: 878006.
    [8] Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981
    [9] Liu Tinghao, Feng Tao, Sui Zhan, et al. 50 mm-aperture Nd: LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz[J]. Optics Express, 2019, 27(11): 15595-15603. doi: 10.1364/OE.27.015595
    [10] Reagan B A, Baumgarten C, Jankowska E, et al. Scaling diode-pumped, high energy picosecond lasers to kilowatt average powers[J]. High Power Laser Science and Engineering, 2018, 6: e11. doi: 10.1017/hpl.2018.3
    [11] Zhang Huaijin, Liu Junhai, Wang Jiyang, et al. Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG[J]. Optics Express, 2007, 15(15): 9464-9469. doi: 10.1364/OE.15.009464
    [12] Koechner W. Solid-state laser engineering[M]. New York, NY: Springer, 2002.
    [13] 於海武, 徐美健, 段文涛, 等. Yb离子抽运动力学及脉冲储能特性研究[J]. 物理学报, 2007, 56(7):4158-4168 doi: 10.3321/j.issn:1000-3290.2007.07.087

    Yu Haiwu, Xu Meijian, Duan Wentao, et al. Investigation on pumping dynamics and pulsed energy storage performance of Yb ions[J]. Acta Physica Sinica, 2007, 56(7): 4158-4168 doi: 10.3321/j.issn:1000-3290.2007.07.087
    [14] Bourdet G L. Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers[J]. Applied Optics, 2000, 39(6): 966-971. doi: 10.1364/AO.39.000966
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  245
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 修回日期:  2023-02-01
  • 录用日期:  2023-02-11
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回