Research on multi-pass amplification characteristics of Yb:CNGG active mirror
-
摘要: 高效、高平均功率固体纳秒脉冲激光器在光电对抗、激光雷达、材料改性、激光加工等诸多领域发挥着越来越重要的作用,然而目前大多数纳秒级高平均功率激光器采用Yb:YAG或掺Nd材料作为增益介质,材料的高饱和通量或低储能密度会导致激光器放大链路复杂,体积庞大。研究比较了一种更适合作为高平均功率、高脉冲能量激光器增益介质的无序石榴石晶体Yb:CNGG,研究了有源反射镜结构中Yb:CNGG的多程增益特性,分析了放大过程并建立了多程放大模型,在一定的泵浦条件下优化了晶体参数以实现更好的储能。开展了双程放大实验,在15 kW/cm2的泵浦功率密度下得到了1.53倍的增益。对比Yb:CNGG晶体与Yb:YAG晶体的多程放大能力,在相同的晶体参数和泵浦条件下,在入射能量1 mJ时Yb:CNGG可实现2.11 J的脉冲能量输出,优于Yb:YAG晶体1.41 J的能量输出。Abstract: High efficiency and high average power nanosecond pulsed solid state lasers are playing an increasingly important role in photoelectric countermeasures, lidar, material modification, laser processing and many other fields. However, at present, Yb:YAG or Nd-doped materials are adopted as gain medium in most nanosecond high average power lasers. The high saturation flux or low energy storage density of the materials lead to complex laser amplification link and large laser volume. In this paper, a disordered garnet crystal Yb:CNGG that is more suitable as a gain medium for high average power and high pulse energy lasers is studied and compared. The multi-pass gain characteristics of Yb:CNGG in the structure of active mirror are researched. The amplification process is analyzed and the multi-pass amplification model is established. The crystal parameters are optimized under certain pumping conditions to achieve better energy storage. The double-pass amplification experiment was carried out, and a gain of 1.53 was obtained at the pump power density of 15 kW/cm2. The multi-pass amplification capability of Yb:CNGG and Yb:YAG is compared. Under the same crystal parameters and pumping conditions, the pulse energy output of 2.11 J can be achieved by Yb:CNGG crystal at the incident energy of 1 mJ, which is better than the energy output of 1.41 J of Yb:YAG crystal.
-
Key words:
- Yb: CNGG /
- laser amplifier /
- multi-pass amplification /
- active mirror /
- laser diode
-
表 1 Yb:CNGG, Yb:YAG和 Nd:glass (LHG-5)的常用参数对比
Table 1. Comparison of common parameters of Yb:CNGG, Yb:YAG and Nd: Glass (LHG-5)
crystal absorption
wavelength/nmabsorption cross
section/(10−20 cm2)emission
wavelength/nmemission cross
section/(10−20 cm2)fluorescence
lifetime/msthermal conductivity/
(W·m−1·K−1)Yb:CNGG 941 1.6 1028 2.4 0.79 4.7 Yb:YAG 941 0.76 1030 2.03 0.95 10 Nd:Glass (LHG-5) 840 3.0 1054 4.1 0.29 1.19 -
[1] Liu Jie, Duan Yanmin, Li Zhihong, et al. Recent progress in nonlinear frequency conversion of optical vortex lasers[J]. Frontiers in Physics, 2022, 10: 865029. doi: 10.3389/fphy.2022.865029 [2] Zeng Huangjun, Lin Zhanglang, Xue Wenze, et al. SESAM mode-locked Yb: Ca3Gd2(BO3)4 femtosecond laser[J]. Applied Sciences, 2021, 11: 9464. doi: 10.3390/app11209464 [3] Bogdanovich M, Grigor'ev A, Dudikov V, et al. Pulsed high-repetition rate diode-pumped Nd: YAG laser source with advanced ring Q-switch modulator[J]. Results in Optics, 2021, 3: 100077. doi: 10.1016/j.rio.2021.100077 [4] Stjernström M, Laurell F, Brismar H. Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy[J]. Journal of Laser Applications, 2008, 20(3): 160-164. doi: 10.2351/1.2955554 [5] Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387. doi: 10.13182/FST07-A1517 [6] Albach D, Arzakantsyan M, Bourdet G, et al. Current status of the LUCIA laser system[J]. Journal of Physics: Conference Series, 2010, 244: 032015. doi: 10.1088/1742-6596/244/3/032015 [7] Banerjee S, Ertel K, Mason P, et al. DiPOLE: A multi-slab cryogenic diode pumped Yb: YAG amplifier[C]//Proceedings of SPIE Volume 8780, High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers. , 2017: 878006. [8] Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981 [9] Liu Tinghao, Feng Tao, Sui Zhan, et al. 50 mm-aperture Nd: LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz[J]. Optics Express, 2019, 27(11): 15595-15603. doi: 10.1364/OE.27.015595 [10] Reagan B A, Baumgarten C, Jankowska E, et al. Scaling diode-pumped, high energy picosecond lasers to kilowatt average powers[J]. High Power Laser Science and Engineering, 2018, 6: e11. doi: 10.1017/hpl.2018.3 [11] Zhang Huaijin, Liu Junhai, Wang Jiyang, et al. Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG[J]. Optics Express, 2007, 15(15): 9464-9469. doi: 10.1364/OE.15.009464 [12] Koechner W. Solid-state laser engineering[M]. New York, NY: Springer, 2002. [13] 於海武, 徐美健, 段文涛, 等. Yb离子抽运动力学及脉冲储能特性研究[J]. 物理学报, 2007, 56(7):4158-4168 doi: 10.3321/j.issn:1000-3290.2007.07.087Yu Haiwu, Xu Meijian, Duan Wentao, et al. Investigation on pumping dynamics and pulsed energy storage performance of Yb ions[J]. Acta Physica Sinica, 2007, 56(7): 4158-4168 doi: 10.3321/j.issn:1000-3290.2007.07.087 [14] Bourdet G L. Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers[J]. Applied Optics, 2000, 39(6): 966-971. doi: 10.1364/AO.39.000966