留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
周文中, 潘卫民, 葛锐, 等. 中国散裂中子源二期双spoke超导腔设计[J]. 强激光与粒子束, 2023, 35: 034004. doi: 10.11884/HPLPB202335.220266
引用本文: 周文中, 潘卫民, 葛锐, 等. 中国散裂中子源二期双spoke超导腔设计[J]. 强激光与粒子束, 2023, 35: 034004. doi: 10.11884/HPLPB202335.220266
Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004. doi: 10.11884/HPLPB202335.220266
Citation: Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004. doi: 10.11884/HPLPB202335.220266

中国散裂中子源二期双spoke超导腔设计

doi: 10.11884/HPLPB202335.220266
详细信息
    作者简介:

    周文中,zhouwz@ihep.ac.cn

    通讯作者:

    潘卫民,panwm@ihep.ac.cn

  • 中图分类号: TL503.2

Design of the China Spallation Neutron Source phase II double spoke resonator

  • 摘要: 中国散裂中子源是中国第一台、世界第四台脉冲型散裂中子源,其已于2020年2月达到100 kW功率的设计指标,运行稳定高效,供束效率位于国际前列。中国散裂中子源二期升级方案中总束流功率将升级到500 kW,其中直线加速器段将采用超导加速腔结构,束流能量由80 MeV提高到300 MeV。其中在80~165 MeV能量段采用324 MHz双spoke超导腔,在165~300 MeV能量段采用648 MHz 6-cell椭球超导腔。采用CST、COMSOL等仿真软件完成324 MHz双spoke超导腔的电磁、机械设计及优化,达到实际运行指标要求。为了提高腔运行的稳定性,在腔的设计中对EP/Eacc着重进行了优化,使其尽量降低。
  • 图  1  双spoke腔的基本参数示意图

    Figure  1.  Schematic diagram of basic parameters of double-spoke cavity

    图  2  参数优化流程框图

    Figure  2.  Flow chart of parameter optimization

    图  3  Ep/Eacc=4.1时电场在内表面及轴向分布

    Figure  3.  Distribution of electric field on the internal surface and axis with Ep/Eacc =4.1

    图  4  双spoke腔TTF分布

    Figure  4.  TTF distribution of DSR

    图  5  MP易发生的位置及不同材料SEY曲线仿真

    Figure  5.  MP’s position and SEY simulation of different materials

    图  6  耦合器天线及Qe仿真计算

    Figure  6.  Simulation calculation of coupler antenna and Qe

    图  7  双spoke腔槽结构

    Figure  7.  The mechanical structure of DSR

    图  8  腔的应力分布与端盖半弧形加强筋结构

    Figure  8.  Stress distribution of DSR and cambered reinforcing ribs

    图  9  LFD系数的拟合

    Figure  9.  LFD coefficient of DSR

    图  10  双spoke腔本征机械频率及振动方式

    Figure  10.  Mechanical intrinsic frequency and vibration mode of DSR

    图  11  装置地地磁场分解

    Figure  11.  Decomposition of the earth magnetic field

    图  12  双spoke超导腔磁屏蔽结构和轴线剩余磁场分布

    Figure  12.  Design of magnetic shield and distribution of residual magnetic field in axis of DSR

    图  13  双spoke腔焊接示意图

    Figure  13.  Welding diagram of DSR

    表  1  双spoke腔主要电磁参数

    Table  1.   Main electromagnetic parameters of DSR

    frequency/MHzβ0aperture/mmEp/EaccBp/Eacc/(mT·MV−1·m)GR/Q)/Ωoperating gradient/(MV·m−1)
    3240.5504.19.21204107.3
    下载: 导出CSV

    表  2  双spoke腔的基模频率和高次模频率

    Table  2.   Fundamental model frequencies and high order mode frequencies of double spoke resonator (DSR)

    modelfrequency/MHz
    1324
    2354
    3386
    4503
    5505
    6548
    7603
    8604
    9613
    10658
    下载: 导出CSV

    表  3  材料在不同温度下的参数

    Table  3.   Material parameters at different temperatures

    materialYoung’s modulus/GPayield strength/MPalimit strength/MPadensity/
    (kg·m−3)
    Poisson’s ratio
    295 K4 K295 K4 K295 K4 K
    Ti 106 117 275 834 344 1117 4500 0.34
    Nb 105 118 70 699 185 742 8560 0.39
    Nb55Ti 62 68 476 476 545 545 6366 0.34
    下载: 导出CSV

    表  4  各个模式振动方式

    Table  4.   Vibration direction of each model

    modelvibration modelvibration frequency/Hz
    1z-axis rotation3.0
    2y-axis rotation3.4
    3z-axis rotation13.7
    4transverse vibration34.3
    5z-axis simultaneous vibration167.6
    6z-axis anisotropic vibration174.7
    7z-axis rotation196.3
    下载: 导出CSV
  • [1] Hopper C S, Park H. High-velocity spoke cavities[C]//Proceedings of SRF2015. 2015: 943-947.
    [2] Hopper C S, Delayen J R. Superconducting spoke cavities for high-velocity applications[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 102001. doi: 10.1103/PhysRevSTAB.16.102001
    [3] Krawczyk F L, Chan K C D, Gentzlinger R C, et al. An integrated design for a beta=0.175 spoke resonator and associated power coupler[C]//Proceedings of the 8th European Particle Accelerator Conference. 2002: 272-274.
    [4] Zaplatin E. Multi-spoke cavity end region analysis[C]//Proceedings of the 12th International Workshop on RF Superconductivity. 2005: 337-341.
    [5] Jiang T C, Xiong P R, Li C L, et al. Development of a superconducting double-spoke cavity at IMP[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 2869-2871.
    [6] 周全. 高性能超导双spoke腔的物理与实验研究[D]. 北京: 中国科学院大学, 2021

    Zhou Quan. Physical and experimental studies of high performance superconducting double spoke cavity[D]. Beijing: University of Chinese Academy of Sciences, 2021
    [7] Delayen J R, De Silva S U, Hopper C S. Design of superconducting spoke cavities for high-velocity applications[C]//Proceedings of 2011 Particle Accelerator Conference. 2011: 1024-1026.
    [8] Delayen J R. Low and intermediate beta cavity design—a tutorial[C]//Proceedings of the 11th Workshop on RF Superconductivity. 2015: 486-495.
    [9] Padamsee H, Knobloch J, Hays T. RF superconductivity for accelerators[M]. 2nd ed. Weinheim: Wiley-VCH, 2008.
    [10] Zheng Hongjuan, Zhang Pei, Li Zhongquan, et al. Design optimization of a mechanically improved 499.8-MHz single-cell superconducting cavity for HEPS[J]. IEEE Transactions on Applied Superconductivity, 2021, 31: 3500109.
    [11] Merio M. Material properties for engineering analyses of SRF cavities[M]. Fermi National Accelerator Laboratory, 2011.
    [12] Ginsburg C M, Reid C, Sergatskov D A. Magnetic shielding for the Fermilab vertical cavity test facility[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1419-1422. doi: 10.1109/TASC.2009.2018234
    [13] Jung Y, Joung M, Hyun M O, et al. Analysis of high pressure rinsing chacteristics for SRF cavities[C]//Proceedings of SRF2015. 2015: 414-417.
    [14] Guo H, Xiong P R, Shi Z X, et al. Study on local chemical treatment for recovery from surface oxidation by HPR process on SRF cavities[C]//18th International Conference on RF Superconductivity. 2017: 592-594.
    [15] Jones T, Pattalwar S, Burt G, et al. Determining BCP etch rate and uniformity in high luminosity LHC crab cavities[C]//18th International Conference on RF Superconductivity. 2017: 635-639.
    [16] Boffo C, Elementi L, Terechkine Y. Facility for chemical polishing of superconducting niobium RF cavities[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2401-2404. doi: 10.1109/TASC.2005.849682
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  922
  • HTML全文浏览量:  272
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2023-01-01
  • 录用日期:  2023-01-01
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回