留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载等离子体扰动对Z箍缩动态黑腔辐射温度的影响

刘晓丽 祁建敏 褚衍运

刘晓丽, 祁建敏, 褚衍运. 负载等离子体扰动对Z箍缩动态黑腔辐射温度的影响[J]. 强激光与粒子束, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280
引用本文: 刘晓丽, 祁建敏, 褚衍运. 负载等离子体扰动对Z箍缩动态黑腔辐射温度的影响[J]. 强激光与粒子束, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280
Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280
Citation: Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280

负载等离子体扰动对Z箍缩动态黑腔辐射温度的影响

doi: 10.11884/HPLPB202335.220280
基金项目: 国家自然科学基金项目(11875239,12135010,12175207)
详细信息
    作者简介:

    刘晓丽,xiaoli_liu2020@163.com

  • 中图分类号: TL62

Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum

  • 摘要: 通过二维辐射流体力学模拟研究了Z箍缩动态黑腔负载等离子体撞击泡沫柱的动力学过程,探索了带扰动负载等离子体形状对黑腔内辐射温度的影响。结果表明,带有扰动的负载等离子体撞击泡沫后会产生Rayleigh-Taylor(RT)流体不稳定性,导致动态黑腔内的辐射在负载等离子体光薄区域发生漏失,使黑腔内辐射温度降低;负载等离子体扰动振幅越大、波长越大,辐射漏失越严重,同等动能加载条件下黑腔内辐射温度也越低。
  • 图  1  负载等离子体撞击泡沫模拟示意图

    Figure  1.  Schematic diagram of simulation of loaded plasma impinging on foam

    图  2  t =3 ns时刻,高度z=0.3 cm处的压强(p)和辐射温度(Tr)的径向分布图

    Figure  2.  Radial distribution diagram of pressure (p) and radiation temperature (Tr) at t =3 ns and z=0.3 cm

    图  3  z=0.3 cm、r=0.2 cm处动态黑腔内辐射温度(Tr)演化图

    Figure  3.  Evolution diagram of radiation temperature (Tr) in dynamic hohlraum at z= 0.3 cm and r= 0.2 cm

    图  4  W等离子体撞击泡沫柱后不同时刻辐射温度(K)分布云图

    Figure  4.  Distribution cloud diagram of radiation temperature (K) at different time (t) after W plasma impinging on foam column

    图  5  t =4.5 ns时刻,高度z=0.3 cm处压强和密度径向分布

    Figure  5.  Radial distribution of pressure and density at time t =4.5 ns and height z=0.3 cm)

    图  6  带扰动的负载撞击泡沫模拟示意图

    Figure  6.  Schematic diagram of load plasma with disturbance impacting foam

    图  7  负载上不同扰动振幅下动态黑腔内的辐射温度 (Tr)演化

    Figure  7.  Radiation temperature (Tr) evolution in a dynamic hohlraum under different perturbation amplitudes on load

    图  8  t=5 ns时刻不同初始扰动振幅(A)下密度分布云图

    Figure  8.  Cloud image of density distribution under different initial disturbance amplitudes (A) at time t=5 ns

    图  9  t=5 ns时刻不同初始扰动振幅(A)下辐射温度 (Tr) 分布云图

    Figure  9.  Radiative temperature (Tr) distribution cloud at time t=5 ns with different initial disturbance amplitudes

    图  10  负载上不同扰动波长($ \lambda $)下动态黑腔辐射温度演化(r=0.1 cm)

    Figure  10.  Radiation temperature evolution of dynamic hohlraum under different disturbance wavelengths ($ \lambda $) on load

    图  11  波长分别为0.2 cm和0.1 cm不同时刻下密度云图

    Figure  11.  Density contour at different time under disturbance wavelengths $\lambda {\text{ = }}0.2$ cm and $\lambda {\text{ = }}0.1$ cm on load

    图  12  波长分别为$\lambda {\text{ = }}$0.2 cm和$\lambda {\text{ = }}$0.06 cm不同时刻下辐射温度云图

    Figure  12.  Radiative temperature (Tr) distribution cloud at different time under disturbance wavelengths $\lambda {\text{ = }}$0.2 cm and $\lambda {\text{ = }}$0.06 cm on load plasma

  • [1] 杜祥琬, 叶奇蓁, 徐銤, 等. 核能技术方向研究及发展路线图[J]. 中国工程科学, 2018, 20(3):17-24

    Du Xiangwan, Ye Qizhen, Xu Mi, et al. Research on technology directions and development roadmap of nuclear energy[J]. Strategic Study of CAE, 2018, 20(3): 17-24
    [2] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201 doi: 10.3788/HPLPB20142609.90201

    Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.3788/HPLPB20142609.90201
    [3] 彭先觉, 刘成安, 师学明. 核能未来与Z箍缩驱动聚变裂变混合堆[M]. 北京: 国防工业出版社, 2019

    Peng Xianjue, Liu Cheng’an, Shi Xueming. Nuclear energy future and Z-pinch driven fusion fission hybrid reactor[M]. Beijing: National Defense Industry Press, 2019
    [4] Slutz S A, Bailey J E, Chandler G A, et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 2003, 10(5): 1875-1882. doi: 10.1063/1.1565117
    [5] Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [6] Sanford T W L, Lemke R W, Mock R C, et al. Dynamics and characteristics of a 215-eV dynamic-hohlraum X-ray source on Z[J]. Physics of Plasmas, 2002, 9(8): 3573-3594. doi: 10.1063/1.1489676
    [7] Bennett G R, Cuneo M E, Vesey R A, et al. Symmetric inertial-confinement-fusion-capsule implosions in a double-Z-pinch-driven hohlraum[J]. Physical Review Letters, 2002, 89: 245002. doi: 10.1103/PhysRevLett.89.245002
    [8] Sanford T W L, Olson R E, Mock R C, et al. Dynamics of a Z-pinch X-ray source for heating inertial-confinement-fusion relevant hohlraums to 120–160 eV[J]. Physics of Plasmas, 2000, 7(11): 4669-4682. doi: 10.1063/1.1316087
    [9] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [10] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208

    Ning Cheng, Feng Zhixing, Xuechuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica , 2014, 63(12): 125208.
    [11] 丁宁, 邬吉明, 戴自换, 等. Z箍缩内爆的MARED程序数值模拟分析[J]. 物理学报, 2010, 59(12):8707-8716 doi: 10.7498/aps.59.8707

    Ding Ning, Wu Jiming, Dai Zihuan, et al. Numerical simulation analysis of Z-pinch implosion using MARED code[J]. Acta Physica Sinica, 2010, 59(12): 8707-8716 doi: 10.7498/aps.59.8707
    [12] 肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203

    Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [13] 肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640

    Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [14] 何开辉, 冯开明, 李强, 等. 金属丝阵列Z箍缩装置中的瑞利-泰勒不稳定性[J]. 核聚变与等离子体物理, 2000, 20(4):241-245 doi: 10.3969/j.issn.0254-6086.2000.04.010

    He Kaihui, Feng Kaiming, Li Qiang, et al. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch[J]. Nuclear Fusion and Plasma Physics, 2000, 20(4): 241-245 doi: 10.3969/j.issn.0254-6086.2000.04.010
    [15] Shumlak U, Roderick N F. Mitigation of the Rayleigh–Taylor instability by sheared axial flows[J]. Physics of Plasmas, 1998, 5(6): 2384-2389. doi: 10.1063/1.872913
    [16] 张扬, 丁宁. 轴向流对Z箍缩等离子体稳定性的影响[J]. 物理学报, 2006, 55(5):2333-2339 doi: 10.3321/j.issn:1000-3290.2006.05.037

    Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch[J]. Acta Physica Sinica, 2006, 55(5): 2333-2339 doi: 10.3321/j.issn:1000-3290.2006.05.037
    [17] 段耀勇, 郭永辉, 王文生, 等. Z箍缩等离子体不稳定性的数值研究[J]. 物理学报, 2004, 53(10):3429-3434 doi: 10.3321/j.issn:1000-3290.2004.10.036

    Duan Yaoyong, Guo Yonghui, Wang Wensheng, et al. Numerical investigations of Z-pinch plasma instabilities[J]. Acta Physica Sinica, 2004, 53(10): 3429-3434 doi: 10.3321/j.issn:1000-3290.2004.10.036
    [18] Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
    [19] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202

    Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
    [20] Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 1998, 5(5): 2071-2080. doi: 10.1063/1.872879
    [21] 徐彬彬. Z箍缩动态黑腔内辐射温度与均匀性以及烧蚀层界面不稳定性研究[D]. 长沙: 国防科技大学, 2017

    Xu Binbin. Research on the radiation temperature and radiation uniformity in Z-pinch dynamic hohlraum and the fluid instability in ablator[D]. Changsha: National University of Defense Technology, 2017
    [22] Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 2000, 131(1): 273-334. doi: 10.1086/317361
    [23] 龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005 doi: 10.11884/HPLPB201426.102005

    Long Chengde, Zhao Bin, Yuan Peng, et al. Simulation of expansion of aluminum plasmas produced by a small focal spot nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005
    [24] Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 2012, 8(4): 322-328. doi: 10.1016/j.hedp.2012.08.001
    [25] 孙伟, 吕冲, 雷柱, 等. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究[J]. 物理学报, 2022, 71:154701 doi: 10.7498/aps.71.20220362

    Sun Wei, Lü Chong, Lei Zhu, et al. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2022, 71: 154701 doi: 10.7498/aps.71.20220362
    [26] Faik S, Tauschwitz A, Iosilevskiy I. The equation of state package FEOS for high energy density matter[J]. Computer Physics Communications, 2018, 227: 117-125. doi: 10.1016/j.cpc.2018.01.008
    [27] Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(3): 674-676. doi: 10.1016/S0168-9002(98)00446-X
    [28] 赵凯歌, 薛创, 王立锋, 等. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型[J]. 物理学报, 2018, 67:094701 doi: 10.7498/aps.67.20172613

    Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface[J]. Acta Physica Sinica, 2018, 67: 094701 doi: 10.7498/aps.67.20172613
  • 加载中
图(12)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  236
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2023-02-21
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回